14,384 research outputs found

    Chaos and a Resonance Mechanism for Structure Formation in Inflationary Models

    Get PDF
    We exhibit a resonance mechanism of amplification of density perturbations in inflationary mo-dels, using a minimal set of ingredients (an effective cosmological constant, a scalar field minimally coupled to the gravitational field and matter), common to most models in the literature of inflation. This mechanism is based on the structure of homoclinic cylinders, emanating from an unstable periodic orbit in the neighborhood of a saddle-center critical point, present in the phase space of the model. The cylindrical structure induces oscillatory motions of the scales of the universe whenever the orbit visits the neighborhood of the saddle-center, before the universe enters a period of exponential expansion. The oscillations of the scale functions produce, by a resonance mechanism, the amplification of a selected wave number spectrum of density perturbations, and can explain the hierarchy of scales observed in the actual universe. The transversal crossings of the homoclinic cylinders induce chaos in the dynamics of the model, a fact intimately connected to the resonance mechanism occuring immediately before the exit to inflation.Comment: 4 pages. This essay received an Honorable Mention from the Gravity Research Foundation, 1998-Ed. To appear in Mod. Phys. Lett.

    Living bacteria rheology: population growth, aggregation patterns and cooperative behaviour under different shear flows

    Full text link
    The activity of growing living bacteria was investigated using real-time and in situ rheology -- in stationary and oscillatory shear. Two different strains of the human pathogen Staphylococcus aureus -- strain COL and its isogenic cell wall autolysis mutant -- were considered in this work. For low bacteria density, strain COL forms small clusters, while the mutant, presenting deficient cell separation, forms irregular larger aggregates. In the early stages of growth, when subjected to a stationary shear, the viscosity of both strains increases with the population of cells. As the bacteria reach the exponential phase of growth, the viscosity of the two strains follow different and rich behaviours, with no counterpart in the optical density or in the population's colony forming units measurements. While the viscosity of strain COL keeps increasing during the exponential phase and returns close to its initial value for the late phase of growth, where the population stabilizes, the viscosity of the mutant strain decreases steeply, still in the exponential phase, remains constant for some time and increases again, reaching a constant plateau at a maximum value for the late phase of growth. These complex viscoelastic behaviours, which were observed to be shear stress dependent, are a consequence of two coupled effects: the cell density continuous increase and its changing interacting properties. The viscous and elastic moduli of strain COL, obtained with oscillatory shear, exhibit power-law behaviours whose exponent are dependent on the bacteria growth stage. The viscous and elastic moduli of the mutant have complex behaviours, emerging from the different relaxation times that are associated with the large molecules of the medium and the self-organized structures of bacteria. These behaviours reflect nevertheless the bacteria growth stage.Comment: 9 pages, 10 figure

    Characterization of the Intra-Unit-Cell magnetic order in Bi2Sr2CaCu2O8+d

    Full text link
    As in YBa2Cu3O6+x and HgBa2CuO8+d, the pseudo-gap state in Bi2Sr2CaCu2O8+d is characterized by the existence of an intra-unit-cell magnetic order revealed by polarized neutron scattering technique. We report here a supplementary set of polarized neutron scattering measurements for which the direction of the magnetic moment is determined and the magnetic intensity is calibrated in absolute units. The new data allow a close comparison between bilayer systems YBa2Cu3O6+x and Bi2Sr2CaCu2O8+d and rise important questions concerning the range of the magnetic correlations and the role of disorder around optimal doping.Comment: 12 pages, 8 figures, submitted to physical review

    The redshift and broad band spectral energy distribution of NRAO 150

    Full text link
    Context. NRAO 150 is one of the brightest radio and mm AGN sources on the northern sky. It has been revealed as an interesting source where to study extreme relativistic jet phenomena. However, its cosmological distance has not been reported so far, because of its optical faintness produced by strong Galactic extinction. Aims. Aiming at measuring the redshift of NRAO 150, and hence to start making possible quantitative studies from the source. Methods. We have conducted spectroscopic and photometric observations of the source in the near-IR, as well as in the optical. Results. All such observations have been successful in detecting the source. The near-IR spectroscopic observations reveal strong Hα\alpha and Hβ\beta emission lines from which the cosmological redshift of NRAO 150 (z=1.517±0.002z=1.517\pm0.002) has been determined for the first time. We classify the source as a flat-spectrum radio-loud quasar, for which we estimate a large super-massive black-hole mass ∼5×109M⊙\sim5\times 10^{9} \mathrm{M_\odot}. After extinction correction, the new near-IR and optical data have revealed a high-luminosity continuum-emission excess in the optical (peaking at ∼2000\sim2000\,\AA, rest frame) that we attribute to thermal emission from the accretion disk for which we estimate a high accretion rate, ∼30\sim30\,% of the Eddington limit. Conclusions. Comparison of these source properties, and its broad-band spectral-energy distribution, with those of Fermi blazars allow us to predict that NRAO 150 is among the most powerful blazars, and hence a high luminosity -although not detected yet- γ\gamma-ray emitter.Comment: 8 pages, 4 figure

    One-step replica symmetry breaking solution of the quadrupolar glass model

    Full text link
    We consider the quadrupolar glass model with infinite-range random interaction. Introducing a simple one-step replica symmetry breaking ansatz we investigate the para-glass continuous (discontinuous) transition which occurs below (above) a critical value of the quadrupole dimension m*. By using a mean-field approximation we study the stability of the one-step replica symmetry breaking solution and show that for m>m* there are two transitions. The thermodynamic transition is discontinuous but there is no latent heat. At a higher temperature we find the dynamical or glass transition temperature and the corresponding discontinuous jump of the order parameter.Comment: 10 pages, 3 figure

    Friend or foe? A thematic analysis on adult friendships and chronic pain

    Get PDF
    Background: Chronic pain is a worldwide public health challenge. Despite chronic pain having biopsychosocial dimensions, its social contexts are less investigated. Although current evidence shows that chronic pain shapes and is shaped by interactions with romantic partners, research about friendships and chronic pain is scarce, and mostly focused on adolescents. Aim: Drawing upon theories on friendship and social support, this study aimed to investigate the role of adult friendships on chronic pain adjustment and, the effect of chronic pain on adult friendships. Methods: This study drew upon a qualitative descriptive methodology. Sixteen adults with primary or secondary (non-cancer) chronic pain participated in individual semi-structured interviews, conducted using voice over internet protocol applications. Data analysis was guided by Clarke and Brown's guidelines for thematic analysis. Results: The analysis of participants’ (87.5% women; Mage = 43 years) stories revealed two themes. The first captured how friends promote/hinder adjustment to chronic pain by being: (1) (un)available and providing (un)needed support; and (2) (not)accepting and (not)accommodating to support life engagement. The second captured the negative effect of chronic pain on both parties’ attitudes and behaviors towards the relationship, leading to smaller and more homogeneous friendship networks. Conclusions: This study stresses the relevance of including adult friends in interventions to reduce the negative effect of chronic pain on friendships, harnessing their power to promote chronic pain adjustment. The findings bring new insights on a topic that has rarely been investigated in the pain field, hence pointing out innovative directions for future research and practice.info:eu-repo/semantics/publishedVersio

    Nanometric pitch in modulated structures of twist-bend nematic liquid crystals

    Full text link
    The extended Frank elastic energy density is used to investigate the existence of a stable periodically modulate structure that appears as a ground state exhibiting a twist-bend molecular arrangement. For an unbounded sample, we show that the twist-bend nematic phase NTBN_{TB} is characterized by a heliconical structure with a pitch in the nano-metric range, in agreement with experimental results. For a sample of finite thickness, we show that the wave vector of the stable periodic structure depends not only on the elastic parameters but also on the anchoring energy, easy axis direction, and the thickness of the sample.Comment: 11 page

    A Graph-based Approach for Higher Order Gis Topological Analysis

    Get PDF
    Retrieving structured information from an initial random collection of objects may be carried out by understanding the spatial arrangement between them, assuming no prior knowledge about those objects. As far as topology is concerned, contemporary desktop GIS packages do not generally support further analysis beyond adjacency. Thus, one of the original motivations of this work was to develop new ideas for scene analysis by building up a graph-based technique for better interpretation and understanding of spatial relationships between GIS vector-based objects beyond its first level of adjacency; the final aim is the performance of some kind of local feature organization into a more meaningful global scene by using graph theory. As the example scenario, a LiDAR data set is being used to test the technique that we plan to develop and implement. After the generation of the respective TIN, two different binary classifications were applied to the TIN facets (based on two different slope thresholds) and TIN facets have been aggregated into homogeneous polygons according to their slope characteristics. A graph-based clustering procedure inside these polygonal regions, by establishing a neighbourhood graph, followed by the delineation of cluster shapes and the derivation of cluster characteristics in order to obtain higher level geographic entities information (regarding sets of buildings, vegetation areas, and say, land-use parcels) is object of further work. The results we are expecting to obtain might be useful to support land-use mapping, image understanding or, generally speaking, to support clustering analysis and generalization processes

    A containment-first search algorithm for higher-order analysis of urban topology

    Get PDF
    Research has revealed the importance of the concepts from the mathematical areas of both topology and graph theory for interpreting the spatial arrangement of spatial entities. Graph theory in particular has been used in different applications of a wide range of fields for that purpose, however not many graph-theoretic approaches to analyse entities within the urban environment are available in the literature. Some examples should be mentioned though such as, Bafna (2003), Barr and Barnsley (2004), Bunn et al. (2000), Krüger (1999), Nardinochi et al. (2003), and Steel et al. (2003). Very little work has been devoted in particular to the interpretation of initially unstructured geospatial datasets. In most of the applications developed up-to-date for the interpretation and analysis of spatial phenomena within the urban context, the starting point is to some extent a meaningful dataset in terms of the urban scene. Starting at a level further back, before meaningful data are obtained, the interpretation and analysis of spatial phenomena are more challenging tasks and require further investigation. The aim of retrieving structured information from initial unstructured spatial data, translated into more meaningful homogeneous regions, can be achieved by identifying meaningful structures within the initial random collection of objects and by understanding their spatial arrangement (Anders et al., 1999). It is believed that the task of understanding topological relationships between objects can be accomplished by both applying graph theory and carrying out graph analysis (de Almeida et al., 2007)
    • …
    corecore