1,075 research outputs found

    Observation of Scalar Aharonov-Bohm Effect with Longitudinally Polarized Neutrons

    Get PDF
    We have carried out a neutron interferometry experiment using longitudinally polarized neutrons to observe the scalar Aharonov-Bohm effect. The neutrons inside the interferometer are polarized parallel to an applied pulsed magnetic field B(t). The pulsed B field is spatially uniform so it exerts no force on the neutrons. Its direction also precludes the presence of any classical torque to change the neutron polarization

    Scalar Aharonov-Bohm effect with longitudinally polarized neutrons

    Get PDF
    In the scalar Aharonov-Bohm effect, a charged particle (electron) interacts with the scalar electrostatic potential U in the field-free (i.e., force-free) region inside an electrostatic cylinder (Faraday cage). Using a perfect single-crystal neutron interferometer we have performed a “dual” scalar Aharonov-Bohm experiment by subjecting polarized thermal neutrons to a pulsed magnetic field. The pulsed magnetic field was spatially uniform, precluding any force on the neutrons. Aligning the direction of the pulsed magnetic field to the neutron magnetic moment also rules out any classical torque acting to change the neutron polarization. The observed phase shift is purely quantum mechanical in origin. A detailed description of the experiment, performed at the University of Missouri Research Reactor, and its interpretation is given in this paper

    Frontoinsular cortical microstructure is linked to life satisfaction in young adulthood

    Get PDF
    Life satisfaction is a component of subjective wellbeing that reflects a global judgement of the quality of life according to an individual’s own needs and expectations. As a psychological construct, it has attracted attention due to its relationship to mental health, resilience to stress, and other factors. Neuroimaging studies have identified neurobiological correlates of life satisfaction; however, they are limited to functional connectivity and gray matter morphometry. We explored features of gray matter microstructure obtained through compartmental modeling of multi-shell diffusion MRI data, and we examined cortical microstructure in frontoinsular cortex in a cohort of 807 typical young adults scanned as part of the Human Connectome Project. Our experiments identified the orientation dispersion index (ODI), and analogously fractional anisotropy (FA), of frontoinsular cortex as a robust set of anatomically-specific lateralized diffusion MRI microstructure features that are linked to life satisfaction, independent of other demographic, socioeconomic, and behavioral factors. We further validated our findings in a secondary test-retest dataset and found high reliability of our imaging metrics and reproducibility of outcomes. In our analysis of twin and non-twin siblings, we found basic microstructure in frontoinsular cortex to be strongly genetically determined. We also found a more moderate but still very significant genetic role in determining microstructure as it relates to life satisfaction in frontoinsular cortex. Our findings suggest a potential linkage between well-being and microscopic features of frontoinsular cortex, which may reflect cellular morphology and architecture and may more broadly implicate the integrity of the homeostatic processing performed by frontoinsular cortex as an important component of an individual’s judgements of life satisfaction

    THC Exposure is Reflected in the Microstructure of the Cerebral Cortex and Amygdala of Young Adults

    Get PDF
    The endocannabinoid system serves a critical role in homeostatic regulation through its influence on processes underlying appetite, pain, reward, and stress, and cannabis has long been used for the related modulatory effects it provides through tetrahydrocannabinol (THC). We investigated how THC exposure relates to tissue microstructure of the cerebral cortex and subcortical nuclei using computational modeling of diffusion magnetic resonance imaging data in a large cohort of young adults from the Human Connectome Project. We report strong associations between biospecimen-defined THC exposure and microstructure parameters in discrete gray matter brain areas, including frontoinsular cortex, ventromedial prefrontal cortex, and the lateral amygdala subfields, with independent effects in behavioral measures of memory performance, negative intrusive thinking, and paternal substance abuse. These results shed new light on the relationship between THC exposure and microstructure variation in brain areas related to salience processing, emotion regulation, and decision making. The absence of effects in some other cannabinoid-receptor-rich brain areas prompts the consideration of cellular and molecular mechanisms that we discuss. Further studies are needed to characterize the nature of these effects across the lifespan and to investigate the mechanistic neurobiological factors connecting THC exposure and microstructural parameters

    Classical and Quantum Interaction of the Dipole

    Get PDF
    A unified and fully relativistic treatment of the interaction of the electric and magnetic dipole moments of a particle with the electromagnetic field is given. New forces on the particle due to the combined effect of electric and magnetic dipoles are obtained. Four new experiments are proposed, three of which would observe topological phase shifts.Comment: 10 pages, Latex/Revtex. Some minor errors have been correcte

    Parametric coupling between macroscopic quantum resonators

    Full text link
    Time-dependent linear coupling between macroscopic quantum resonator modes generates both a parametric amplification also known as a {}"squeezing operation" and a beam splitter operation, analogous to quantum optical systems. These operations, when applied properly, can robustly generate entanglement and squeezing for the quantum resonator modes. Here, we present such coupling schemes between a nanomechanical resonator and a superconducting electrical resonator using applied microwave voltages as well as between two superconducting lumped-element electrical resonators using a r.f. SQUID-mediated tunable coupler. By calculating the logarithmic negativity of the partially transposed density matrix, we quantitatively study the entanglement generated at finite temperatures. We also show that characterization of the nanomechanical resonator state after the quantum operations can be achieved by detecting the electrical resonator only. Thus, one of the electrical resonator modes can act as a probe to measure the entanglement of the coupled systems and the degree of squeezing for the other resonator mode.Comment: 15 pages, 4 figures, submitte
    • …
    corecore