2,956 research outputs found
Topology, Locality, and Aharonov-Bohm Effect with Neutrons
Recent neutron interferometry experiments have been interpreted as
demonstrating a new topological phenomenon similar in principle to the usual
Aharonov-Bohm (AB) effect, but with the neutron's magnetic moment replacing the
electron's charge. We show that the new phenomenon, called Scalar AB (SAB)
effect, follows from an ordinary local interaction, contrary to the usual AB
effect, and we argue that the SAB effect is not a topological effect by any
useful definition. We find that SAB actually measures an apparently novel spin
autocorrelation whose operator equations of motion contain the local torque in
the magnetic field. We note that the same remarks apply to the Aharonov-Casher
effect.Comment: 9 page
Early Hearing-Impairment Results in Crossmodal Reorganization of Ferret Core Auditory Cortex
Numerous investigations of cortical crossmodal plasticity, most often in congenital or early-deaf subjects, have indicated that secondary auditory cortical areas reorganize to exhibit visual responsiveness while the core auditory regions are largely spared. However, a recent study of adult-deafened ferrets demonstrated that core auditory cortex was reorganized by the somatosensory modality. Because adult animals have matured beyond their critical period of sensory development and plasticity, it was not known if adult-deafening and early-deafening would generate the same crossmodal results. The present study used young, ototoxically-lesioned ferrets () that, after maturation (avg. = 173 days old), showed significant hearing deficits (avg. threshold = 72 dB SPL). Recordings from single-units () in core auditory cortex showed that 72% were activated by somatosensory stimulation (compared to 1% in hearing controls). In addition, tracer injection into early hearing-impaired core auditory cortex labeled essentially the same auditory cortical and thalamic projection sources as seen for injections in the hearing controls, indicating that the functional reorganization was not the result of new or latent projections to the cortex. These data, along with similar observations from adult-deafened and adult hearing-impaired animals, support the recently proposed brainstem theory for crossmodal plasticity induced by hearing loss
Aging and decision making: a comparison between neurologically healthy elderly and young individuals
We report the results of experiments on economic decisions with two populations, one of healthy elderly individuals (average age 82) and one of younger students (average age 20). We examine confidence, decisions under uncertainty, differences between willingness to pay and willingness to accept and the theory of mind (strategic thinking). Our findings indicate that the older adults’ decision behavior is similar to that of young adults, contrary to the notion that economic decision making is impaired with age. Moreover, some of the demonstrated decision behaviors suggest that the elderly individuals are less biased than the younger individuals
The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans
The von Economo neurons (VENs) are large bipolar neurons located in frontoinsular (FI) and anterior cingulate cortex in great apes and humans, but not other primates. We performed stereological counts of the VENs in FI and LA (limbic anterior, a component of anterior cingulate cortex) in great apes and in humans. The VENs are more numerous in humans than in apes, although one gorilla approached the lower end of the human range. We also examined the ontological development of the VENs in FI and LA in humans. The VENs first appear in small numbers in the 36th week post-conception, are rare at birth, and increase in number during the first 8 months after birth. There are significantly more VENs in the right hemisphere than in the left in FI and LA in postnatal brains of apes and humans. This asymmetry in VEN numbers may be related to asymmetries in the autonomic nervous system. The activity of the inferior anterior insula, which contains FI, is related to physiological changes in the body, decision-making, error recognition, and awareness. The VENs appear to be projection neurons, although their targets are unknown. We made a preliminary study of the connections of FI cortex based on diffusion tensor imaging in the brain of a gorilla. The VEN-containing regions connect to the frontal pole as well as to other parts of frontal and insular cortex, the septum, and the amygdala. It is likely that the VENs in FI are projecting to some or all of these structures and relaying information related to autonomic control, decision-making, or awareness. The VENs selectively express the bombesin peptides neuromedin B (NMB) and gastrin releasing peptide (GRP) which are also expressed in another population of closely related neurons, the fork cells. NMB and GRP signal satiety. The genes for NMB and GRP are expressed selectively in small populations of neurons in the insular cortex in mice. These populations may be related to the VEN and fork cells and may be involved in the regulation of appetite. The loss of these cells may be related to the loss of satiety signaling in patients with frontotemporal dementia who have damage to FI. The VENs and fork cells may be morphological specializations of an ancient population of neurons involved in the control of appetite present in the insular cortex in all mammals. We found that the protein encoded by the gene DISC1 (disrupted in schizophrenia) is preferentially expressed by the VENs. DISC1 has undergone rapid evolutionary change in the line leading to humans, and since it suppresses dendritic branching it may be involved in the distinctive VEN morphology
A real-time neural system for color constancy
A neural network approach to the problem of color constancy is presented. Various algorithms based on Land's retinex theory are discussed with respect to neurobiological parallels, computational efficiency, and suitability for VLSI implementation. The efficiency of one algorithm is improved by the application of resistive grids and is tested in computer simulations; the simulations make clear the strengths and weaknesses of the algorithm. A novel extension to the algorithm is developed to address its weaknesses. An electronic system that is based on the original algorithm and that operates at video rates was built using subthreshold analog CMOS VLSI resistive grids. The system displays color constancy abilities and qualitatively mimics aspects of human color perception
Heralded quantum steering over a high-loss channel
Entanglement is the key resource for many long-range quantum information
tasks, including secure communication and fundamental tests of quantum physics.
These tasks require robust verification of shared entanglement, but performing
it over long distances is presently technologically intractable because the
loss through an optical fiber or free-space channel opens up a detection
loophole. We design and experimentally demonstrate a scheme that verifies
entanglement in the presence of at least dB of added loss,
equivalent to approximately km of telecommunication fiber. Our protocol
relies on entanglement swapping to herald the presence of a photon after the
lossy channel, enabling event-ready implementation of quantum steering. This
result overcomes the key barrier in device-independent communication under
realistic high-loss scenarios and in the realization of a quantum repeater.Comment: 8 pages, 5 figure
- …
