3 research outputs found
Estimation and Fate of New Production in the Marine Environment
The fate of carbon in the ocean determines both the amount of CO_(2) that can be sequestered and the amount of sustainable biomass. Compartmentalization into new and regenerated production allows a first order estimate of carbon available to the local community versus the amount exported. The goal of this project was to study sources and sinks of production in order to test the general hypothesis that new production is underestimated in the marine environment. Specifically we looked at pulsed new nutrients and the effect on the ecosystem, the effect of currents on our measurements and estimates of export (equivalent to new production), and finally development of a new method which will allow in situ determination of new production in the majority of the global ocean.
Specifically, the role of a Pacific herring spawn was investigated as an important stimulant to ecosystem wide carbon and nitrogen cycling in Simpson Bay, Alaska. A consistent pattern was observed each year: a large bloom in June corresponded to the timing of the herring spawn and low nutrients, low phytoplankton diversity, and high POC concentrations; elucidating a previously unidentified pulse of new nutrients to the system.
Estimates of carbon export are affected by the physical environment. The model presented and validated herein is used to improve our understanding of C export by including the effect of horizontal transport. We show that measurements of export to shallow water traps are less impacted by currents than deep traps. Spatial extent of variable primary production necessary to affect deep water traps is greater, as such, over half of the traps analyzed in this study are affected by up-current productivity regimes.
A method to simultaneously quantify the C and N fixing community in the same sample was developed, eliminating many assumptions introduced when using different techniques and incubations. Cultured and environmental samples were successfully hybridized using TSA-FISH. Strong correlations between positively tagged community abundance and ^(14)C/^(15)N measurements are presented. The findings of this work support the general hypothesis that new production is under-accounted for in marine systems
Key drivers of seasonal plankton dynamics in cyclonic and anticyclonic eddies off East Australia
© 2016 Laiolo, McInnes, Matear and Doblin. Mesoscale eddies in the south west Pacific region are prominent ocean features that represent distinctive environments for phytoplankton. Here, we examine the seasonal plankton dynamics associated with averaged cyclonic and anticyclonic eddies (CE and ACE, respectively) off eastern Australia. We do this through building seasonal climatologies of mixed layer depth (MLD) and surface chlorophyll-a for both CE and ACE by combining remotely sensed sea surface height (TOPEX/Poseidon, Envisat, Jason-1, and OSTM/Jason-2), remotely sensed ocean color (GlobColour) and in situ profiles of temperature, salinity and pressure from Argo floats. Using the CE and ACE seasonal climatologies, we assimilate the surface chlorophyll-a data into both a single (WOMBAT), and multi-phytoplankton class (EMS) biogeochemical model to investigate the level of complexity required to simulate the phytoplankton chlorophyll-a. For the two eddy types, the data assimilation showed both biogeochemical models only needed one set of parameters to represent phytoplankton but needed different parameters for zooplankton. To assess the simulated phytoplankton behavior we compared EMS model simulations with a ship-based experiment that involved incubating a winter phytoplankton community sampled from below the mixed layer under ambient and two higher light intensities with and without nutrient enrichment. By the end of the 5-day field experiment, large diatom abundance was four times greater in all treatments compared to the initial community, with a corresponding decline in pico-cyanobacteria. The experimental results were consistent with the simulated behavior in CE and ACE, where the seasonal deepening of the mixed layer during winter produced a rapid increase in large phytoplankton. Our model simulations suggest that CE off East Australia are not only characterized by a higher chlorophyll-a concentration compared to ACE, but also by a higher concentration of large phytoplankton (i.e., diatoms) due to the shallower CE mixed layer. The model simulations also suggest the zooplankton community is different in the two eddy types and this behavior needs further investigation
Live cell analysis at sea reveals divergent thermal performance between photosynthetic ocean microbial eukaryote populations
Experimentation at sea provides insight into which traits of ocean microbes are linked to performance in situ. Here we show distinct patterns in thermal tolerance of microbial phototrophs from adjacent water masses sampled in the south-west Pacific Ocean, determined using a fluorescent marker for reactive oxygen species (ROS). ROS content of pico-eukaryotes was assessed after 1, 5 and 25 h of incubation along a temperature gradient (15.6–32.1 °C). Pico-eukaryotes from the East Australian Current (EAC) had relatively constant ROS and showed greatest mortality after 25 h at 7 °C below ambient, whereas those from the Tasman Sea had elevated ROS in both warm and cool temperature extremes and greatest mortality at temperatures 6–10 °C above ambient, interpreted as the outcome of thermal stress. Tracking of water masses within an oceanographic circulation model showed populations had distinct thermal histories, with EAC pico-eukaryotes experiencing higher average temperatures for at least 1 week prior to sampling. While acclimatization and community assembly could both influence biological responses, this study clearly demonstrates that phenotypic divergence occurs along planktonic drift trajectories