1,784 research outputs found

    Coupled ‘storm-flood’ depositional model: application to the Miocene–Modern Baram Delta Province, north-west Borneo

    Get PDF
    The Miocene to Modern Baram Delta Province is a highly efficient source to sink system that has accumulated 9 to 12 km of coastal-deltaic to shelf sediments over the past 15 Myr. Facies analysis based on ca 1 km of total vertical outcrop stratigraphy, combined with subsurface geology and sedimentary processes in the present-day Baram Delta Province, suggests a ‘storm-flood’ depositional model comprising two distinct periods: (i) fair-weather periods are dominated by alongshore sediment reworking and coastal sand accumulation; and (ii) monsoon-driven storm periods are characterised by increased wave energy and offshore-directed downwelling storm flow that occur simultaneously with peak fluvial discharge caused by storm-precipitation (‘storm-floods’). The modern equivalent environment has the following characteristics: (i) humid-tropical monsoonal climate; (ii) narrow (ca <100 km) and steep (ca 1°), densely vegetated, coastal plain; (iii) deep tropical weathering of a mudstone-dominated hinterland; (iv) multiple independent, small to moderate-sized (102 to 105 km2) drainage basins; (v) predominance of river-mouth bypassing; and (vi) supply-dominated shelf. The ancient, proximal part of this system (the onshore Belait Formation) is dominated by strongly cyclical sandier-upward successions (metre to decametre-scale) comprising (from bottom to top): (i) finely laminated mudstone with millimetre-scale silty laminae; (ii) heterolithic sandstone-mudstone alternations (centimetre to metre-scale); and (iii) sharp-based, swaley cross-stratified sandstone beds and bedsets (metre to decimetre-scale). Gutter casts (decimetre to metre-scale) are widespread, they are filled with swaley cross-stratified sandstone and their long-axes are oriented perpendicular to the palaeo-shoreline. The gutter casts and other associated waning-flow event beds suggest that erosion and deposition was controlled by high-energy, offshore-directed, oscillatory-dominated, sediment-laden combined flows within a shoreface to delta front setting. The presence of multiple river mouths and exceptionally high rates of accommodation creation (characteristic of the Neogene to Recent Baram Delta Province; up to 3000 m/Ma), in a ‘storm-flood’ dominated environment, resulted in a highly efficient and effective offshore-directed sediment transport system

    Y2 and Y4 Receptor Signalling Attenuates the Skeletal Response of Central NPY

    Get PDF

    Tidal dynamics and mangrove carbon sequestration during the Oligo–Miocene in the South China Sea

    Get PDF
    Modern mangroves are among the most carbon-rich biomes on Earth, but their long-term (≥106 yr) impact on the global carbon cycle is unknown. The extent, productivity and preservation of mangroves are controlled by the interplay of tectonics, global sea level and sedimentation, including tide, wave and fluvial processes. The impact of these processes on mangrove-bearing successions in the Oligo–Miocene of the South China Sea (SCS) is evaluated herein. Palaeogeographic reconstructions, palaeotidal modelling, and facies analysis suggest that elevated tidal range and bed shear stress optimised mangrove development along tide-influenced tropical coastlines. Preservation of mangrove organic carbon (OC) was promoted by high tectonic subsidence and fluvial sediment supply. Lithospheric storage of OC in peripheral SCS basins potentially exceeded 4000 Gt (equivalent to 2000 ppm of atmospheric CO2). These results highlight the crucial impact of tectonic and oceanographic processes on mangrove OC sequestration within the global carbon cycle on geological timescales

    Novel Role of Y1 Receptors in the Coordinated Regulation of Bone and Energy Homeostasis

    Get PDF
    The importance of neuropeptide Y (NPY) and Y2 receptors in the regulation of bone and energy homeostasis has recently been demonstrated. However, the contributions of the other Y recep- tors are less clear. Here we show that Y1 receptors are expressed on osteoblastic cells. Moreover, bone and adipose tissue mass are elevated in Y1/ mice with a generalized increase in bone formation on cortical and cancellous surfaces. Importantly, the inhibitory effects of NPY on bone marrow stromal cells in vitro are absent in cells derived from Y1/ mice, indicating a direct action of NPY on bone cells via this Y receptor. Interestingly, in contrast to Y2 receptor or germ line Y1 receptor deletion, con- ditional deletion of hypothalamic Y1 receptors in adult mice did not alter bone homeostasis, food intake, or adiposity. Further- more, deletion of both Y1 and Y2 receptors did not produce additive effects in bone or adiposity. Thus Y1 receptor pathways act powerfully to inhibit bone production and adiposity by non- hypothalamic pathways, with potentially direct effects on bone tissue through a single pathway with Y2 receptors

    Functional diversity of marine ecosystems after the Late Permian mass extinction event

    Get PDF
    Article can be accessed from http://www.nature.com/ngeo/journal/v7/n3/full/ngeo2079.htmlThe Late Permian mass extinction event was the most severe such crisis of the past 500 million years and occurred during an episode of global warming. It is assumed to have had significant ecological impact, but its effects on marine ecosystem functioning are unknown and the patterns of marine recovery are debated. We analysed the fossil occurrences of all known Permian-Triassic benthic marine genera and assigned each to a functional group based on their inferred life habit. We show that despite the selective extinction of 62-74% of marine genera there was no significant loss of functional diversity at the global scale, and only one novel mode of life originated in the extinction aftermath. Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed, which explains the absence of a Cambrian-style Triassic radiation in higher taxa. Functional diversity was, however, significantly reduced in particular regions and habitats, such as tropical reefs, and at these scales recovery varied spatially and temporally, probably driven by migration of surviving groups. Marine ecosystems did not return to their pre-extinction state, however, and radiation of previously subordinate groups such as motile, epifaunal grazers led to greater functional evenness by the Middle Triassic
    • …
    corecore