13 research outputs found

    On nonlinear free surface potential flow by a Bubnov-Galerkin formulation in space and a semi-lagrangian semi-implicit scheme in time

    No full text
    The potential flow initial-boundary value problem describing fluid-structure interaction with fully nonlinear free surface boundary conditions has been studied using a mixed Lagrangian-Eulerian formulation. The boundary-value problem has been solved in the physical domain by means of a Bubnov-Galerkin formulation of the Laplace equation. The initialvalue problem related to the behavior of some of the moving boundaries has been discretized using various numerical techniques. Among these is a series of predictor-corrector methods. These methodologies proved to require considerable numerical smoothing to maintain stability of the numerical scheme. In turn, dissipation led to inaccuracies in the solution of the problem. In order to avoid this negative effect, a semi-implicit semi-Lagrangian two-time level iterative scheme that is almost free from smoothing has been developed. A Bubnov-Galerkin formulation of an elliptic system for the generation of boundary fitted curvilinear coordinates has been used. When solved iteratively, this method provides orthogonal meshes of very good characteristics for both symmetric and non-symmetric domains. Previous publications concluded that the present system was inadequate for non-symmetric regions leading to lack of convergence in the iterative process. Solutions described in this work show that this limitation has been overcome. Fluid responses to periodic excitation of surface-piercing and submerged bodies have been calculated. Both linear and nonlinear cases show agreement with published results. Very low total energy/work error has been obtained which demonstrates accuracy, good stability and convergence characteristics of the numerical scheme. The impulsive response of tanks of various shapes has also been simulated. Resulting natural frequencies show good agreement with available data. A slender body representation of the flow around a hull advancing with forward speed in otherwise calm water has also been simulated. Numerical calculations of a number of quantities of engineering interest are presented for different length Froude numbers. Results compare favorably with experimental data.Applied Science, Faculty ofMechanical Engineering, Department ofGraduat

    Experimental and numerical analysis of a fishing vessel motions and stability in a longitudinal seaway

    No full text
    Motions and stability of a typical B.C. fishing vessel were experimentally and numerically investigated in a longitudinal seaway condition. The experimental model was self-propelled, radio-controlled and equipped with an on-board data acquisition system. Pitch, roll, yaw, surge, and heave responses to regular waves of predetermined frequencies and amplitudes generated along a 220-ft model basin were obtained. Different displacement conditions and GM configurations were tested. The numerical model for the dynamic analysis of the fishing vessel motions has been implemented using strip theory. A computer program was developed to study the nonlinear motions of the vessel. The velocity dependent coupling terms, responsible for a major part of the nonlinear behavior, were included. A time dependent component analysis of the roll damping has been performed. Regular linear and nonlinear waves were used. A parametric study of the fishing vessel stability has been carried out by considering its dynamic response in waves of varying characteristics. Unstable behaviour was found to be closely related to waves of length of similar magnitude to the ship length. The effects of wave amplitude and rudder usage were found to be of capital importance in the capsizing process. Experimental and numerical results showed good agreement.Applied Science, Faculty ofMechanical Engineering, Department ofGraduat

    A numerical study of fluid structure interaction of a flexible submerged cylinder mounted on an experimental rig

    No full text
    The aim of the study is to investigate VIV effects, not only on a test cylinder but also on the experimental rig being towed under water at a prescribed depth and operating speeds. For this purpose, a numerical Multi-Physics model was created using one way coupled analysis simultaneously between the Mechanical and Fluent solvers of ANSYS software package. A system coupling was developed in order to communicate force data alternately between the solvers with the help of automatic mapping algorithms within millesimal time periods of a second. Numerical investigation into the dynamic characteristics of pressure and velocity fields for turbulent viscous fluid flow along with structural responses of the system, stressed the significance of time and space scales for convergence and accuracy of our Finite Volume (FV) CFD calculations.The article from: V. 7, Ocean EngineeringPeer reviewed: YesNRC publication: Ye

    Development of BOLD signal hemodynamic responses in the human brain

    Get PDF
    In the rodent brain the hemodynamic response to a brief external stimulus changes significantly during development. Analogous changes in human infants would complicate the determination and use of the hemodynamic response function (HRF) for functional magnetic resonance imaging (fMRI) in developing populations. We aimed to characterize HRF in human infants before and after the normal time of birth using rapid sampling of the Blood Oxygen Level Dependent (BOLD) signal. A somatosensory stimulus and an event related experimental design were used to collect data from 10 healthy adults, 15 sedated infants at term corrected post menstrual age (PMA) (median 41 + 1 weeks), and 10 preterm infants (median PMA 34 + 4 weeks). A positive amplitude HRF waveform was identified across all subject groups, with a systematic maturational trend in terms of decreasing time-to-peak and increasing positive peak amplitude associated with increasing age. Application of the age-appropriate HRF models to fMRI data significantly improved the precision of the fMRI analysis. These findings support the notion of a structured development in the brain's response to stimuli across the last trimester of gestation and beyond

    Tightening Bonds in Latin America Through Phage Discovery

    No full text
    Between 2015-2019, we hosted an International Phage Course at Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. The two-week full-time course was hands-on and included lectures from renowned phage biologists. Participating students were able to meet and discuss with recognized experts from around the world in a familiar setting, facilitating the establishment of scientific collaborations and the expansion of their networks. Eighty-four students from fourteen Latin American countries have participated in the course, that included isolation, characterization, genome sequencing and annotation of novel phages. We have successfully created a coursework that enabled the acquisition of new knowledge and expertise in bacteriophage biology and strengthened ties among Latin American colleagues.Fil: Payaslian, Florencia Pía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Gradaschi, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Rondon Salazar, Liliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Dieterle, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Urdániz, Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Di Paola, Matías Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Zon, Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Allievi, Mariana Caludia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Sanchez Rivas, Carmen. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Raya, Raul Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Reyes, Alejandro. Universidad de los Andes; Colombia. Washington University in St. Louis; Estados UnidosFil: Piuri, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    Preferential Binding to Elk-1 by SLE-Associated IL10 Risk Allele Upregulates IL10 Expression

    Get PDF

    Hegemonía y proceso de acumulación capitalista en Latinoamérica hoy (2001-2007) : el caso argentino

    No full text
    Este texto el resultado del trabajo de tres años de una investigación colectiva, procesada en cuatro equipos de trabajo para analizar la situación del capitalismo contemporáneo entre los años 2001 y 2007, particularmente desde la experiencia argentina. El objetivo de nuestra actividad es contribuir a la mejor comprensión de la realidad socio económica del capitalismo contemporáneo para su transformación, siendo una tarea que se desarrolla desde la investigación participativa, es decir, con el movimiento popular, no desde afuera. Esta publicación tiene el objetivo de contribuir a la crítica del capitalismo de nuestra época y en definitiva, hacia la transformación revolucionaria de la sociedad capitalista

    Identification of a new putative functional IL18 gene variant through an association study in systemic lupus erythematosus

    No full text
    Interleukin-18 (IL-18) is a proinflammatory cytokine that plays an important role in chronic inflammation and autoimmune disorders. In this study, we aimed to determine the potential role of the IL18 gene in SLE. To define the genetic association of the IL18 and SLE, we have genotyped nine SNPs in an independent set of Spanish cases and controls. The IL18 polymorphisms were genotyped by PCR, using a predeveloped TaqMan allele discrimination assay. Two SNPs were still significant after fine mapping of the IL18 gene. The SNP (rs360719) surviving correction for multiple tests was genotyped in two replication cohorts from Italy and Argentina. After the analysis, a significance with rs360719 C-allele remained across the sets and after the meta-analysis (Pooled OR 5 1.37, 95% CI 1.21-1.54, combined P 5 3.8E-07, Pc 5 1.16E-06). Quantitative real-time PCR was performed to assess IL18 mRNA expression in PBMC from subjects with different IL18 rs360719 genotypes. We tested the effect of the IL18 rs360719 polymorphism on the transcription of IL18 by electrophoretic mobility shift assay and western blot. We found a significant increase in the relative expression of IL18 mRNA in individuals carrying the rs360719 C-risk allele; in addition we show that the polymorphism creates a binding site for the transcriptional factor OCT-1. These findings suggest that the novel IL18 rs360719 variant may play an important role in determining the susceptibility to SLE and it could be a key factor in the expression of the IL18 gene. © The Author 2009. Published by Oxford University Press. All rights reserved

    Kallikrein genes are associated with lupus and glomerular basement membrane-specific antibody-induced nephritis in mice and humans

    No full text
    Immune-mediated nephritis contributes to disease in systemic lupus erythematosus, Goodpasture syndrome (caused by antibodies specific for glomerular basement membrane [anti-GBM antibodies]), and spontaneous lupus nephritis. Inbred mouse strains differ in susceptibility to anti-GBM antibody-induced and spontaneous lupus nephritis. This study sought to clarify the genetic and molecular factors that may be responsible for enhanced immune-mediated renal disease in these models. When the kidneys of 3 mouse strains sensitive to anti-GBM antibody-induced nephritis were compared with those of 2 control strains using microarray analysis, one-fifth of the underexpressed genes belonged to the kallikrein gene family, which encodes serine esterases. Mouse strains that upregulated renal and urinary kallikreins exhibited less evidence of disease. Antagonizing the kallikrein pathway augmented disease, while agonists dampened the severity of anti-GBM antibody-induced nephritis. In addition, nephritis-sensitive mouse strains had kallikrein haplotypes that were distinct from those of control strains, including several regulatory polymorphisms, some of which were associated with functional consequences. Indeed, increased susceptibility to anti-GBM antibody-induced nephritis and spontaneous lupus nephritis was achieved by breeding mice with a genetic interval harboring the kallikrein genes onto a disease-resistant background. Finally, both human SLE and spontaneous lupus nephritis were found to be associated with kallikrein genes, particularly KLK1 and the KLK3 promoter, when DNA SNPs from independent cohorts of SLE patients and controls were compared. Collectively, these studies suggest that kallikreins are protective disease-associated genes in anti-GBM antibody-induced nephritis and lupus
    corecore