21 research outputs found

    Stability of Strong Species Interactions Resist the Synergistic Effects of Local and Global Pollution in Kelp Forests

    Get PDF
    Foundation species, such as kelp, exert disproportionately strong community effects and persist, in part, by dominating taxa that inhibit their regeneration. Human activities which benefit their competitors, however, may reduce stability of communities, increasing the probability of phase-shifts. We tested whether a foundation species (kelp) would continue to inhibit a key competitor (turf-forming algae) under moderately increased local (nutrient) and near-future forecasted global pollution (CO2). Our results reveal that in the absence of kelp, local and global pollutants combined to cause the greatest cover and mass of turfs, a synergistic response whereby turfs increased more than would be predicted by adding the independent effects of treatments (kelp absence, elevated nutrients, forecasted CO2). The positive effects of nutrient and CO2 enrichment on turfs were, however, inhibited by the presence of kelp, indicating the competitive effect of kelp was stronger than synergistic effects of moderate enrichment of local and global pollutants. Quantification of physicochemical parameters within experimental mesocosms suggests turf inhibition was likely due to an effect of kelp on physical (i.e. shading) rather than chemical conditions. Such results indicate that while forecasted climates may increase the probability of phase-shifts, maintenance of intact populations of foundation species could enable the continued strength of interactions and persistence of communities

    Quantification of carbon and phosphorus co-limitation in bacterioplankton: new insights on an old topic

    Get PDF
    Because the nature of the main resource that limits bacterioplankton (e.g. organic carbon [C] or phosphorus [P]) has biogeochemical implications concerning organic C accumulation in freshwater ecosystems, empirical knowledge is needed concerning how bacteria respond to these two resources, available alone or together. We performed field experiments of resource manipulation (2×2 factorial design, with the addition of C, P, or both combined) in two Mediterranean freshwater ecosystems with contrasting trophic states (oligotrophy vs. eutrophy) and trophic natures (autotrophy vs. heterotrophy, measured as gross primary production:respiration ratio). Overall, the two resources synergistically co-limited bacterioplankton, i.e. the magnitude of the response of bacterial production and abundance to the two resources combined was higher than the additive response in both ecosystems. However, bacteria also responded positively to single P and C additions in the eutrophic ecosystem, but not to single C in the oligotrophic one, consistent with the value of the ratio between bacterial C demand and algal C supply. Accordingly, the trophic nature rather than the trophic state of the ecosystems proves to be a key feature determining the expected types of resource co-limitation of bacteria, as summarized in a proposed theoretical framework. The actual types of co-limitation shifted over time and partially deviated (a lesser degree of synergism) from the theoretical expectations, particularly in the eutrophic ecosystem. These deviations may be explained by extrinsic ecological forces to physiological limitations of bacteria, such as predation, whose role in our experiments is supported by the relationship between the dynamics of bacteria and bacterivores tested by SEMs (structural equation models). Our study, in line with the increasingly recognized role of freshwater ecosystems in the global C cycle, suggests that further attention should be focussed on the biotic interactions that modulate resource co-limitation of bacteria.This research was supported by Junta de Andalucía (Excelencia P09-RNM-5376 to JMMS) and the Spanish Ministry Ciencia e Innovación (CGL2011-23681 to PC)

    Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia

    No full text
    Induction of active tumor-specific immunity in patients with chronic lymphocytic leukemia (CLL) and other hematologic malignancies is compromised by the deficit of endogenous dendritic cells (DCs). In attempt to develop improved vaccination strategies for patients with CLL and other tumors with poorly identified rejection antigens, we tested the ability of ex vivo-generated DCs to cross-present the antigens expressed by CLL cells and to induce CLL-specific, functional CTL responses. Monocyte-derived DCs from CLL patients were induced to mature using a “standard” cytokine cocktail (in IL-1β, TNF-α, IL-6, and PGE2) or using an α-type 1-polarized DC (αDC1) cocktail (in IL-1β, TNF-α, IFN-α, IFN-γ, and polyinosinic:polycytidylic acid) and were loaded with γ-irradiated, autologous CLL cells. αDC1 from CLL patients expressed substantially higher levels of multiple costimulatory molecules (CD83, CD86, CD80, CD11c, and CD40) than standard DCs (sDCs) and immature DCs, and their expression of CCR7 showed intermediate level. αDC1 secreted substantially higher (10–60 times) levels of IL-12p70 than sDCs. Although αDC1 and sDCs showed similar uptake of CLL cells, αDC1 induced much higher numbers (range, 2.4–38 times) of functional CD8+ T cells against CLL cells. The current demonstration that autologous tumor-loaded αDC1 are potent inducers of CLL-specific T cells helps to develop improved immunotherapies of CLL

    What High Pressure Studies Have Taught Us About High-Temperature Superconductivity

    No full text
    Superconductivity is an important area of modern research which has benefited enormously from experiments under high pressure conditions. The focus of this paper will be on three classes of high-temperature superconductors: (1) the new binary compound MgB2, (2) the alkali-doped fullerenes, and (3) the cuprate oxides. We will discuss results from experiment and theory which illustrate the kinds of vital information the high-pressure variable can give to help better understand these fascinating materials. 1
    corecore