210 research outputs found

    Syntactic Separation of Subset Satisfiability Problems

    Get PDF
    Variants of the Exponential Time Hypothesis (ETH) have been used to derive lower bounds on the time complexity for certain problems, so that the hardness results match long-standing algorithmic results. In this paper, we consider a syntactically defined class of problems, and give conditions for when problems in this class require strongly exponential time to approximate to within a factor of (1-epsilon) for some constant epsilon > 0, assuming the Gap Exponential Time Hypothesis (Gap-ETH), versus when they admit a PTAS. Our class includes a rich set of problems from additive combinatorics, computational geometry, and graph theory. Our hardness results also match the best known algorithmic results for these problems

    Downward translations of equality

    Get PDF
    AbstractIn this paper we construct oracles relative to which DTIME(T(n)) equals NTIME(T(n)) and DTIME(t(n)) does not equal NTIME (t(n)), for t(n) sufficiently smaller than T(n). A stronger result than this is also obtained, though for fewer T(n), expressedin two parts. For T(n)⩽2n, there is an oracle relative to which DTIME(T(n)) equals NTIME(T(n)) and NTIME(2n) contains a set not in DTIME(t(n)) for any t(n) growing more slowly than T(n). For T(n)⩽22n+0(1), there is an oracle relative to which DTIME(T(n)) equals NTIME(T(n)) and NTIME(log T(n)) contains a set not in DTIME(t(n)) for t(n) growing more slowly than T(n). These results expand on those obtained by Dekhtyar (1976), Book et al. (1982), and Allender (1989)

    New Insights on the (Non-)Hardness of Circuit Minimization and Related Problems

    Get PDF
    The Minimum Circuit Size Problem (MCSP) and a related problem (MKTP) that deals with time-bounded Kolmogorov complexity are prominent candidates for NP-intermediate status. We show that, under very modest cryptographic assumptions (such as the existence of one-way functions), the problem of approximating the minimum circuit size (or time-bounded Kolmogorov complexity) within a factor of n^{1 - o(1)} is indeed NP-intermediate. To the best of our knowledge, these problems are the first natural NP-intermediate problems under the existence of an arbitrary one-way function. We also prove that MKTP is hard for the complexity class DET under non-uniform NC^0 reductions. This is surprising, since prior work on MCSP and MKTP had highlighted weaknesses of "local" reductions such as NC^0 reductions. We exploit this local reduction to obtain several new consequences: * MKTP is not in AC^0[p]. * Circuit size lower bounds are equivalent to hardness of a relativized version MKTP^A of MKTP under a class of uniform AC^0 reductions, for a large class of sets A. * Hardness of MCSP^A implies hardness of MKTP^A for a wide class of sets A. This is the first result directly relating the complexity of MCSP^A and MKTP^A, for any A

    The Minimum Oracle Circuit Size Problem

    Get PDF
    We consider variants of the minimum circuit size problem MCSP, where the goal is to minimize the size of oracle circuits computing a given function. When the oracle is QBF, the resulting problem MSCP[superscript QBF] is known to be complete for PSPACE under ZPP reductions. We show that it is not complete under logspace reductions, and indeed it is not even hard for TC[superscript 0] under uniform AC[superscript 0] reductions. We obtain a variety of consequences that follow if oracle versions of MCSP are hard for various complexity classes under different types of reductions. We also prove analogous results for the problem of determining the resource-bounded Kolmogorov complexity of strings, for certain types of Kolmogorov complexity measures.National Science Foundation (U.S.) (grants CCF-1064785, CCF-1423544, and CCF-1555409)Natural Sciences and Engineering Research Council of Canada (Discovery Grant

    Kolmogorov Complexity Characterizes Statistical Zero Knowledge

    Get PDF
    We show that a decidable promise problem has a non-interactive statistical zero-knowledge proof system if and only if it is randomly reducible via an honest polynomial-time reduction to a promise problem for Kolmogorov-random strings, with a superlogarithmic additive approximation term. This extends recent work by Saks and Santhanam (CCC 2022). We build on this to give new characterizations of Statistical Zero Knowledge SZK, as well as the related classes NISZK_L and SZK_L

    Depth-First Search in Directed Planar Graphs, Revisited

    Get PDF

    Better Complexity Bounds for Cost Register Automata

    Get PDF
    Cost register automata (CRAs) are one-way finite automata whose transitions have the side effect that a register is set to the result of applying a state-dependent semiring operation to a pair of registers. Here it is shown that CRAs over the tropical semiring (N U {infinity},min,+) can simulate polynomial time computation, proving along the way that a naturally defined width-k circuit value problem over the tropical semiring is P-complete. Then the copyless variant of the CRA, requiring that semiring operations be applied to distinct registers, is shown no more powerful than NC^1 when the semiring is (Z,+,x) or (Gamma^*,max,concat). This relates questions left open in recent work on the complexity of CRA-computable functions to long-standing class separation conjectures in complexity theory, such as NC versus P and NC^1 versus GapNC^1

    Cryptographic Hardness Under Projections for Time-Bounded Kolmogorov Complexity

    Get PDF
    A version of time-bounded Kolmogorov complexity, denoted KT, has received attention in the past several years, due to its close connection to circuit complexity and to the Minimum Circuit Size Problem MCSP. Essentially all results about the complexity of MCSP hold also for MKTP (the problem of computing the KT complexity of a string). Both MKTP and MCSP are hard for SZK (Statistical Zero Knowledge) under BPP-Turing reductions; neither is known to be NP-complete. Recently, some hardness results for MKTP were proved that are not (yet) known to hold for MCSP. In particular, MKTP is hard for DET (a subclass of P) under nonuniform ?^{NC^0}_m reductions. In this paper, we improve this, to show that the complement of MKTP is hard for the (apparently larger) class NISZK_L under not only ?^{NC^0}_m reductions but even under projections. Also, the complement of MKTP is hard for NISZK under ?^{P/poly}_m reductions. Here, NISZK is the class of problems with non-interactive zero-knowledge proofs, and NISZK_L is the non-interactive version of the class SZK_L that was studied by Dvir et al. As an application, we provide several improved worst-case to average-case reductions to problems in NP, and we obtain a new lower bound on MKTP (which is currently not known to hold for MCSP)

    One-Way Functions and a Conditional Variant of MKTP

    Get PDF
    One-way functions (OWFs) are central objects of study in cryptography and computational complexity theory. In a seminal work, Liu and Pass (FOCS 2020) proved that the average-case hardness of computing time-bounded Kolmogorov complexity is equivalent to the existence of OWFs. It remained an open problem to establish such an equivalence for the average-case hardness of some natural NP-complete problem. In this paper, we make progress on this question by studying a conditional variant of the Minimum KT-complexity Problem (MKTP), which we call McKTP, as follows. 1) First, we prove that if McKTP is average-case hard on a polynomial fraction of its instances, then there exist OWFs. 2) Then, we observe that McKTP is NP-complete under polynomial-time randomized reductions. 3) Finally, we prove that the existence of OWFs implies the nontrivial average-case hardness of McKTP. Thus the existence of OWFs is inextricably linked to the average-case hardness of this NP-complete problem. In fact, building on recently-announced results of Ren and Santhanam [Rahul Ilango et al., 2021], we show that McKTP is hard-on-average if and only if there are logspace-computable OWFs
    • …
    corecore