41,398 research outputs found
A theory of human error
Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error
Space shuttle: Static aerodynamic and control investigation of an expendable second stage with payload alone and with delta wing booster (B-15B-1)
Aerodynamic force and moment coefficients for scale model of expendable second stage modified S-2 alone and mounted piggyback on space shuttle booster from Mach 0.6 to 4.9
Absolute FKBP binding affinities obtained via non-equilibrium unbinding simulations
We compute absolute binding affinities for two ligands bound to the FKBP
protein using non-equilibrium unbinding simulations. The methodology is
straight-forward, requiring little or no modification to many modern molecular
simulation packages. The approach makes use of a physical pathway, eliminating
the need for complicated alchemical decoupling schemes. Results of this study
are promising. For the ligands studied here the binding affinities are
typically estimated within less than 4.0 kJ/mol of the target values; and the
target values are within less than 1.0 kJ/mol of experiment. These results
suggest that non-equilibrium simulation could provide a simple and robust means
to estimate protein-ligand binding affinities.Comment: 9 pages, 3 figures (no necessary color). Changes made to methodology
and results between revision
Space shuttle: Static stability and control investigation of NR/GD delta wing booster (B-20) and delta wing orbiter (134D), volume 1
Experimental aerodynamic investigations have been made on a .0035 scale model North American Rockwell/General Dynamics version of the space shuttle. Static stability and control data were obtained on the delta wing booster alone (B-20) and with the delta wing orbiter (134D) mounted in various positions on the booster. Six component aerodynamic force and moment data were recorded over an angle of attack range from -10 deg to 24 deg at 0 deg and 6 deg sideslip angles and from -10 deg to +10 deg sideslip at 0 deg angle of attack. Mach number ranged from 0.6 to 4.96
Research on display scanning, sampling, and reconstruction using separate main and secondary tracking tasks
Dynamic model for effects of random scanning and sampling on human operator tracking performanc
Performance comparison of differential space-time signalling schemes for OFDM systems
Differential transmit diversity is an attractive alternative to its coherent counterpart, especially for multiple antenna systems where channel estimation is more difficult to attain compared to that of single antenna systems. In this paper we compare two different types of differential transmit diversity techniques for OFDM based transmissions. The first technique uses differential space-time block codes (DSTBC) from orthogonal designs and the second uses the differential cyclic delay diversity (DCDD). The results compare the bit error performance for several transmit antenna configurations. The results show that DCDD offers a very close performance to that of DSTBC, with the advantage of a simplified receiver structure
Compressible flow across narrow passages: Comparison of theory and experiment for face seals
Computer calculation for determining compressible flow across radial face seals were compared with measured results obtained in a seal simulator rig at pressure ratios to 0.9 (ambient pressure/sealed pressure). In general, the measured and calculated leakages across the seal dam agreed within 3 percent. The resultant loss coefficient, dependent upon the pressure ratio, ranged from 0.47 to 0.68. The calculated pressures were within 2.5 N/cu um of the measured values
Complexity, Collective Effects and Modelling of Ecosystems: formation, function and stability
We discuss the relevance of studying ecology within the framework of
Complexity Science from a statistical mechanics approach. Ecology is concerned
with understanding how systems level properties emerge out of the multitude of
interactions amongst large numbers of components, leading to ecosystems that
possess the prototypical characteristics of complex systems. We argue that
statistical mechanics is at present the best methodology available to obtain a
quantitative description of complex systems, and that ecology is in urgent need
of ``integrative'' approaches that are quantitative and non-stationary. We
describe examples where combining statistical mechanics and ecology has led to
improved ecological modelling and, at the same time, broadened the scope of
statistical mechanics.Comment: 11 pages and 1 figur
Competition of the connectivity with the local and the global order in polymer melts and crystals
The competition between the connectivity and the local or global order in
model fully-flexible chain molecules is investigated by molecular-dynamics
simulations. States with both missing (melts) and high (crystal) global order
are considered. Local order is characterized within the first coordination
shell (FCS) of a tagged monomer and found to be lower than in atomic systems in
both melt and crystal. The role played by the bonds linking the tagged monomer
to FCS monomers (radial bonds), and the bonds linking two FCS monomers (shell
bonds) is investigated. The detailed analysis in terms of Steinhardt's
orientation order parameters Q_l (l = 2 - 10) reveals that increasing the
number of shell bonds decreases the FCS order in both melt and crystal.
Differently, the FCS arrangements organize the radial bonds. Even if the
molecular chains are fully flexible, the distribution of the angle formed by
adjacent radial bonds exhibits sharp contributions at the characteristic angles
{\theta} = 70{\deg}, 122{\deg}, 180{\deg}. The fractions of adjacent radial
bonds with {\theta} = 122{\deg}, 180{\deg} are enhanced by the global order of
the crystal, whereas the fraction with 70{\deg} < {\theta} < 110{\deg} is
nearly unaffected by the crystallization. Kink defects, i.e. large lateral
displacements of the chains, are evidenced in the crystalline state.Comment: J. Chem. Phys. in pres
- …