867 research outputs found

    From Forbidden Coronal Lines to Meaningful Coronal Magnetic Fields

    Get PDF
    We review methods to measure magnetic fields within the corona using the polarized light in magnetic-dipole (M1) lines. We are particularly interested in both the global magnetic-field evolution over a solar cycle, and the local storage of magnetic free energy within coronal plasmas. We address commonly held skepticisms concerning angular ambiguities and line-of-sight confusion. We argue that ambiguities are in principle no worse than more familiar remotely sensed photospheric vector-fields, and that the diagnosis of M1 line data would benefit from simultaneous observations of EUV lines. Based on calculations and data from eclipses, we discuss the most promising lines and different approaches that might be used. We point to the S-like [Fe {\sc XI}] line (J=2 to J=1) at 789.2nm as a prime target line (for ATST for example) to augment the hotter 1074.7 and 1079.8 nm Si-like lines of [Fe {\sc XIII}] currently observed by the Coronal Multi-channel Polarimeter (CoMP). Significant breakthroughs will be made possible with the new generation of coronagraphs, in three distinct ways: (i) through single point inversions (which encompasses also the analysis of MHD wave modes), (ii) using direct comparisons of synthetic MHD or force-free models with polarization data, and (iii) using tomographic techniques.Comment: Accepted by Solar Physics, April 201

    Ultrafast quasiparticle relaxation dynamics in normal metals and heavy fermion materials

    Full text link
    We present a detailed theoretical study of the ultrafast quasiparticle relaxation dynamics observed in normal metals and heavy fermion materials with femtosecond time-resolved optical pump-probe spectroscopy. For normal metals, a nonthermal electron distribution gives rise to a temperature (T) independent electron-phonon relaxation time at low temperatures, in contrast to the T^{-3}-divergent behavior predicted by the two-temperature model. For heavy fermion compounds, we find that the blocking of electron-phonon scattering for heavy electrons within the density-of-states peak near the Fermi energy is crucial to explain the rapid increase of the electron-phonon relaxation time below the Kondo temperature. We propose the hypothesis that the slower Fermi velocity compared to the sound velocity provides a natural blocking mechanism due to energy and momentum conservation laws.Comment: 10 pages, 11 figure

    Exact Numerical Solution of the BCS Pairing Problem

    Full text link
    We propose a new simulation computational method to solve the reduced BCS Hamiltonian based on spin analogy and submatrix diagonalization. Then we further apply this method to solve superconducting energy gap and the results are well consistent with those obtained by Bogoliubov transformation method. The exponential problem of 2^{N}-dimension matrix is reduced to the polynomial problem of N-dimension matrix. It is essential to validate this method on a real quantumComment: 7 pages, 3 figure

    Proximity effect in ultrathin Pb/Ag multilayers within the Cooper limit

    Full text link
    We report on transport and tunneling measurements performed on ultra-thin Pb/Ag (strong coupled superconductor/normal metal) multilayers evaporated by quench condensation. The critical temperature and energy gap of the heterostructures oscillate with addition of each layer, demonstrating the validity of the Cooper limit model in the case of multilayers. We observe excellent agreement with a simple theory for samples with layer thickness larger than 30\AA . Samples with single layers thinner than 30\AA deviate from the Cooper limit theory. We suggest that this is due to the "inverse proximity effect" where the normal metal electrons improve screening in the superconducting ultrathin layer and thus enhance the critical temperature.Comment: 4 pages, 4 figure

    Dynamics of an Unbounded Interface Between Ordered Phases

    Full text link
    We investigate the evolution of a single unbounded interface between ordered phases in two-dimensional Ising ferromagnets that are endowed with single-spin-flip zero-temperature Glauber dynamics. We examine specifically the cases where the interface initially has either one or two corners. In both examples, the interface evolves to a limiting self-similar form. We apply the continuum time-dependent Ginzburg-Landau equation and a microscopic approach to calculate the interface shape. For the single corner system, we also discuss a correspondence between the interface and the Young tableau that represents the partition of the integers.Comment: 9 pages, 11 figures, 2-column revtex4 format. V2: references added and discussion section expanded slightly. Final version for PRE. V3: A few small additional editorial change

    Simple Fluids with Complex Phase Behavior

    Full text link
    We find that a system of particles interacting through a simple isotropic potential with a softened core is able to exhibit a rich phase behavior including: a liquid-liquid phase transition in the supercooled phase, as has been suggested for water; a gas-liquid-liquid triple point; a freezing line with anomalous reentrant behavior. The essential ingredient leading to these features resides in that the potential investigated gives origin to two effective core radii.Comment: 7 pages including 3 eps figures + 1 jpeg figur

    Scaling property and peculiar velocity of global monopoles

    Full text link
    We investigate the scaling property of global monopoles in the expanding universe. By directly solving the equations of motion for scalar fields, we follow the time development of the number density of global monopoles in the radiation dominated (RD) universe and the matter dominated (MD) universe. It is confirmed that the global monopole network relaxes into the scaling regime and the number per hubble volume is a constant irrespective of the cosmic time. The number density n(t)n(t) of global monopoles is given by n(t)≃(0.43±0.07)/t3n(t) \simeq (0.43\pm0.07) / t^{3} during the RD era and n(t)≃(0.25±0.05)/t3n(t) \simeq (0.25\pm0.05) / t^{3} during the MD era. We also examine the peculiar velocity vv of global monopoles. For this purpose, we establish a method to measure the peculiar velocity by use of only the local quantities of the scalar fields. It is found that v∼(1.0±0.3)v \sim (1.0 \pm 0.3) during the RD era and v∼(0.8±0.3)v \sim (0.8 \pm 0.3) during the MD era. By use of it, a more accurate analytic estimate for the number density of global monopoles is obtained.Comment: 17 pages, 8 figures, to appear in Phys. Rev.
    • …
    corecore