436 research outputs found
Combined local and equilateral non-Gaussianities from multifield DBI inflation
We study multifield aspects of Dirac-Born-Infeld (DBI) inflation. More
specifically, we consider an inflationary phase driven by the radial motion of
a D-brane in a conical throat and determine how the D-brane fluctuations in the
angular directions can be converted into curvature perturbations when the
tachyonic instability arises at the end of inflation. The simultaneous presence
of multiple fields and non-standard kinetic terms gives both local and
equilateral shapes for non-Gaussianities in the bispectrum. We also study the
trispectrum, pointing out that it acquires a particular momentum dependent
component whose amplitude is given by . We show that
this relation is valid in every multifield DBI model, in particular for any
brane trajectory, and thus constitutes an interesting observational signature
of such scenarios.Comment: 38 pages, 11 figures. Typos corrected; references added. This version
matches the one in press by JCA
Charged-Particle Multiplicities in Charged-Current Neutrino-- and Anti-Neutrino--Nucleus Interactions
The CHORUS experiment, designed to search for
oscillations, consists of a nuclear emulsion target and electronic detectors.
In this paper, results on the production of charged particles in a small sample
of charged-current neutrino-- and anti-neutrino--nucleus interactions at high
energy are presented. For each event, the emission angle and the ionization
features of the charged particles produced in the interaction are recorded,
while the standard kinematic variables are reconstructed using the electronic
detectors. The average multiplicities for charged tracks, the pseudo-rapidity
distributions, the dispersion in the multiplicity of charged particles and the
KNO scaling are studied in different kinematical regions. A study of
quasi-elastic topologies performed for the first time in nuclear emulsions is
also reported. The results are presented in a form suitable for use in the
validation of Monte Carlo generators of neutrino--nucleus interactions.Comment: 17 pages, 5 figure
Community and the creation of provincial identities: a re-interpretation of the aisled building at North Warnborough
The aisled hall at North Warnborough has attracted attention as one of a handful of examples frequently included in surveys and analyses of this common architectural type as well as for arguments related to the gendered use of space. This article presents a new architectural analysis of this building and attempts to set it within its immediate and wider archaeological and geological landscape context. A theoretically informed interpretation of the social significance of this site is offered, which has broader implications for the studies of Romano-British architecture, rural settlement, and landscape
The Physics of Star Cluster Formation and Evolution
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015
Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context.
Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI).
Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa.
Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden.
Funding: Bill & Melinda Gates Foundation
Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector
This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be:
σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb,
where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV
A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions
- …