259 research outputs found
A Model of Curvature-Induced Phase Transitions in Inflationary Universe
Chiral phase transitions driven by space-time curvature effects are
investigated in de Sitter space in the supersymmetric Nambu-Jona-Lasinio model
with soft supersymmetry breaking. The model is considered to be suitable for
the analysis of possible phase transitions in inflationary universe. It is
found that a restoration of the broken chiral symmetry takes place in two
patterns for increasing curvature : the first order and second order phase
transition respectively depending on initial settings of the four-body
interaction parameter and the soft supersymmetry breaking parameter. The
critical curves expressing the phase boundaries in these parameters are
obtained. Cosmological implications of the result are discussed in connection
with bubble formations and the creation of cosmic strings during the
inflationary era.Comment: 12 pages, 3 figures, REVTe
Improved Effective Potential in Curved Spacetime and Quantum Matter - Higher Derivative Gravity Theory
\noindent{\large\bf Abstract.} We develop a general formalism to study the
renormalization group (RG) improved effective potential for renormalizable
gauge theories ---including matter--gravity--- in curved spacetime. The
result is given up to quadratic terms in curvature, and one-loop effective
potentials may be easiliy obtained from it. As an example, we consider scalar
QED, where dimensional transmutation in curved space and the phase structure of
the potential (in particular, curvature-induced phase trnasitions), are
discussed. For scalar QED with higher-derivative quantum gravity (QG), we
examine the influence of QG on dimensional transmutation and calculate QG
corrections to the scalar-to-vector mass ratio. The phase structure of the
RG-improved effective potential is also studied in this case, and the values of
the induced Newton and cosmological coupling constants at the critical point
are estimated. Stability of the running scalar coupling in the Yukawa theory
with conformally invariant higher-derivative QG, and in the Standard Model with
the same addition, is numerically analyzed. We show that, in these models, QG
tends to make the scalar sector less unstable.Comment: 23 pages, Oct 17 199
Proximity effect in ultrathin Pb/Ag multilayers within the Cooper limit
We report on transport and tunneling measurements performed on ultra-thin
Pb/Ag (strong coupled superconductor/normal metal) multilayers evaporated by
quench condensation. The critical temperature and energy gap of the
heterostructures oscillate with addition of each layer, demonstrating the
validity of the Cooper limit model in the case of multilayers. We observe
excellent agreement with a simple theory for samples with layer thickness
larger than 30\AA . Samples with single layers thinner than 30\AA deviate from
the Cooper limit theory. We suggest that this is due to the "inverse proximity
effect" where the normal metal electrons improve screening in the
superconducting ultrathin layer and thus enhance the critical temperature.Comment: 4 pages, 4 figure
On the accretion disc properties in eclipsing dwarf nova EM Cyg
In this paper we analyzed the behavior of the unusual dwarf nova EM Cyg using
the data obtained in April-October, 2007 in Vyhorlat observatory (Slovak
Republic) and in September, 2006 in Crimean Astrophysical Observatory
(Ukraine). During our observations EM Cyg has shown outbursts in every 15-40
days. Because on the light curves of EM Cyg the partial eclipse of an accretion
disc is observed we applied the eclipse mapping technique to reconstruct the
temperature distribution in eclipsed parts of the disc. Calculations of the
accretion rate in the system were made for the quiescent and the outburst
states of activity for different distances.Comment: 6 pages, 3 figures, accepted in Astrophysics and Space Scienc
Relativistic instant-form approach to the structure of two-body composite systems
A new approach to the electroweak properties of two-particle composite
systems is developed. The approach is based on the use of the instant form of
relativistic Hamiltonian dynamics. The main novel feature of this approach is
the new method of construction of the matrix element of the electroweak current
operator. The electroweak current matrix element satisfies the relativistic
covariance conditions and in the case of the electromagnetic current also the
conservation law automatically. The properties of the system as well as the
approximations are formulated in terms of form factors. The approach makes it
possible to formulate relativistic impulse approximation in such a way that the
Lorentz-covariance of the current is ensured. In the electromagnetic case the
current conservation law is ensured, too. The results of the calculations are
unambiguous: they do not depend on the choice of the coordinate frame and on
the choice of "good" components of the current as it takes place in the
standard form of light--front dynamics. Our approach gives good results for the
pion electromagnetic form factor in the whole range of momentum transfers
available for experiments at present time, as well as for lepton decay constant
of pion.Comment: 26 pages, Revtex, 5 figure
Dark energy from conformal symmetry breaking
The breakdown of conformal symmetry in a conformally invariant scalar-tensor
gravitational model is revisited in the cosmological context. Although the old
scenario of conformal symmetry breaking in cosmology containing scalar field
has already been used in many earlier works, it seems that no special attention
has been paid for the investigation on the possible connection between the
breakdown of conformal symmetry and the existence of dark energy. In this
paper, it is shown that the old scenario of conformal symmetry breaking in
cosmology, if properly interpreted, not only has a potential ability to
describe the origin of dark energy as a symmetry breaking effect, but also may
resolve the coincidence problem.Comment: 11 pages, minor revision, published online in EPJ
Running coupling: Does the coupling between dark energy and dark matter change sign during the cosmological evolution?
In this paper we put forward a running coupling scenario for describing the
interaction between dark energy and dark matter. The dark sector interaction in
our scenario is free of the assumption that the interaction term is
proportional to the Hubble expansion rate and the energy densities of dark
sectors. We only use a time-variable coupling (with the scale factor
of the universe) to characterize the interaction . We propose a
parametrization form for the running coupling in which the
early-time coupling is given by a constant , while today the coupling is
given by another constant, . For investigating the feature of the running
coupling, we employ three dark energy models, namely, the cosmological constant
model (), the constant model (), and the time-dependent
model (). We constrain the models with the current
observational data, including the type Ia supernova, the baryon acoustic
oscillation, the cosmic microwave background, the Hubble expansion rate, and
the X-ray gas mass fraction data. The fitting results indicate that a
time-varying vacuum scenario is favored, in which the coupling crosses
the noninteracting line () during the cosmological evolution and the sign
changes from negative to positive. The crossing of the noninteracting line
happens at around , and the crossing behavior is favored at about
1 confidence level. Our work implies that we should pay more attention
to the time-varying vacuum model and seriously consider the phenomenological
construction of a sign-changeable or oscillatory interaction between dark
sectors.Comment: 8 pages, 5 figures; refs added; to appear in EPJ
Interacting Three Fluid System and Thermodynamics of the Universe Bounded by the Event Horizon
The work deals with the thermodynamics of the universe bounded by the event
horizon. The matter in the universe has three constituents namely dark energy,
dark matter and radiation in nature and interaction between then is assumed.
The variation of entropy of the surface of the horizon is obtained from unified
first law while matter entropy variation is calculated from the Gibbss' law.
Finally, validity of the generalized second law of thermodynamics is examined
and conclusions are written point wise.Comment: 7 page
Cosmological Evolution Across Phantom Crossing and the Nature of the Horizon
In standard cosmology, with the evolution of the universe, the matter density
and thermodynamic pressure gradually decreases. Also in course of evolution,
the matter in the universe obeys (or violates) some restrictions or energy
conditions. If the matter distribution obeys strong energy condition (SEC), the
universe is in a decelerating phase while violation of SEC indicates an
accelerated expansion of the universe. In the period of accelerated expansion
the matter may be either of quintessence nature or of phantom nature depending
on the fulfilment of the weak energy condition (WEC) or violation of it. As
recent observational evidences demand that the universe is going through an
accelerated expansion so mater should be either quintessence or phantom in
nature. In the present work we study the evolution of the universe through the
phantom barrier (i.e. the dividing line between the quintessence and phantom
era) and examine how apparent and event horizon change across the barrier.
Finally, we investigate the possibility of occurrence of any singularity in
phantom era.Comment: 7 pages and 4 figure
Cosmic acceleration from second order gauge gravity
We construct a phenomenological theory of gravitation based on a second order
gauge formulation for the Lorentz group. The model presents a long-range
modification for the gravitational field leading to a cosmological model
provided with an accelerated expansion at recent times. We estimate the model
parameters using observational data and verify that our estimative for the age
of the Universe is of the same magnitude than the one predicted by the standard
model. The transition from the decelerated expansion regime to the accelerated
one occurs recently (at ).Comment: RevTex4 15 pages, 1 figure. Accepted for publication in Astrophysics
& Space Scienc
- âŠ