47,565 research outputs found
Entering the Mainstream: The Quality and Extent of Online Education in the United States, 2003 and 2004
Presents key findings from a survey of over 1,100 colleges and universities that looks at the growth of online enrollments, the quality of online offerings, student satisfaction, and the role of online learning in the long-term strategy of schools
Sizing the Opportunity: The Quality and Extent of Online Education in the United States, 2002 and 2003
Presents key findings from a survey that details the quality of online learning, which institutions offer online courses, what types of courses are offered, characteristics of online learners, and growth forecasts for online education
Local-Aggregate Modeling for Big-Data via Distributed Optimization: Applications to Neuroimaging
Technological advances have led to a proliferation of structured big data
that have matrix-valued covariates. We are specifically motivated to build
predictive models for multi-subject neuroimaging data based on each subject's
brain imaging scans. This is an ultra-high-dimensional problem that consists of
a matrix of covariates (brain locations by time points) for each subject; few
methods currently exist to fit supervised models directly to this tensor data.
We propose a novel modeling and algorithmic strategy to apply generalized
linear models (GLMs) to this massive tensor data in which one set of variables
is associated with locations. Our method begins by fitting GLMs to each
location separately, and then builds an ensemble by blending information across
locations through regularization with what we term an aggregating penalty. Our
so called, Local-Aggregate Model, can be fit in a completely distributed manner
over the locations using an Alternating Direction Method of Multipliers (ADMM)
strategy, and thus greatly reduces the computational burden. Furthermore, we
propose to select the appropriate model through a novel sequence of faster
algorithmic solutions that is similar to regularization paths. We will
demonstrate both the computational and predictive modeling advantages of our
methods via simulations and an EEG classification problem.Comment: 41 pages, 5 figures and 3 table
Transposable regularized covariance models with an application to missing data imputation
Missing data estimation is an important challenge with high-dimensional data
arranged in the form of a matrix. Typically this data matrix is transposable,
meaning that either the rows, columns or both can be treated as features. To
model transposable data, we present a modification of the matrix-variate
normal, the mean-restricted matrix-variate normal, in which the rows and
columns each have a separate mean vector and covariance matrix. By placing
additive penalties on the inverse covariance matrices of the rows and columns,
these so-called transposable regularized covariance models allow for maximum
likelihood estimation of the mean and nonsingular covariance matrices. Using
these models, we formulate EM-type algorithms for missing data imputation in
both the multivariate and transposable frameworks. We present theoretical
results exploiting the structure of our transposable models that allow these
models and imputation methods to be applied to high-dimensional data.
Simulations and results on microarray data and the Netflix data show that these
imputation techniques often outperform existing methods and offer a greater
degree of flexibility.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS314 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
- …