2,193 research outputs found

    Scanning Electron Microscopic Analysis of Intraocular Ossification in Advanced Retinal Disease

    Get PDF
    Chicken eyes from congenic blind (rd/rd) animals showing early, intermediate, and final stages of ossification, similar to the phthisis bulbi condition in man, were examined using scanning and transmission electron microscopy as well as light microscopy and X-ray microanalysis. Early stages of ossification were devoid of mineralized calcium apatite while intermediate and end stages of the disorder contained large amounts of calcium and phosphorus. This process resulted in metaplastic bone formation. An intact Bruch\u27s membrane appeared to separate the choroid from the degenerated pigment epithelium and the developing bone suggesting that its possible origin was metaplasia of the retinal pigment epithelium and the degenerated sensory retina. The end-stage ossification resulted in phthisic bone formation which completely filled the vitreous cavity in a manner very similar to the human condition of phthisis bulbi

    Two Loop Scalar Bilinears for Inflationary SQED

    Get PDF
    We evaluate the one and two loop contributions to the expectation values of two coincident and gauge invariant scalar bilinears in the theory of massless, minimally coupled scalar quantum electrodynamics on a locally de Sitter background. One of these bilinears is the product of two covariantly differentiated scalars, the other is the product of two undifferentiated scalars. The computations are done using dimensional regularization and the Schwinger-Keldysh formalism. Our results are in perfect agreement with the stochastic predictions at this order.Comment: 43 pages, LaTeX 2epsilon, 5 figures (using axodraw.sty) Version 2 has updated references and important corrections to Tables 3-5 and to eqns (139-141), (145-146), (153-155), (158) and (160

    Unruh response functions for scalar fields in de Sitter space

    Full text link
    We calculate the response functions of a freely falling Unruh detector in de Sitter space coupled to scalar fields of different coupling to the curvature, including the minimally coupled massless case. Although the responses differ strongly in the infrared as a consequence of the amplification of superhorizon modes, the energy levels of the detector are thermally populated.Comment: 16 pages, 1 figure, accepted for publication by Classical and Quantum Gravit

    Classical approximation to quantum cosmological correlations

    Full text link
    We investigate up to which order quantum effects can be neglected in calculating cosmological correlation functions after horizon exit. As a toy model, we study ϕ3\phi^3 theory on a de Sitter background for a massless minimally coupled scalar field ϕ\phi. We find that for tree level and one loop contributions in the quantum theory, a good classical approximation can be constructed, but for higher loop corrections this is in general not expected to be possible. The reason is that loop corrections get non-negligible contributions from loop momenta with magnitude up to the Hubble scale H, at which scale classical physics is not expected to be a good approximation to the quantum theory. An explicit calculation of the one loop correction to the two point function, supports the argument that contributions from loop momenta of scale HH are not negligible. Generalization of the arguments for the toy model to derivative interactions and the curvature perturbation leads to the conclusion that the leading orders of non-Gaussian effects generated after horizon exit, can be approximated quite well by classical methods. Furthermore we compare with a theorem by Weinberg. We find that growing loop corrections after horizon exit are not excluded, even in single field inflation.Comment: 44 pages, 1 figure; v2: corrected errors, added references, conclusions unchanged; v3: added section in which we compare with stochastic approach; this version matches published versio

    Saturation of electrical resistivity

    Full text link
    Resistivity saturation is observed in many metallic systems with a large resistivity, i.e., when the resistivity has reached a critical value, its further increase with temperature is substantially reduced. This typically happens when the apparent mean free path is comparable to the interatomic separations - the Ioffe-Regel condition. Recently, several exceptions to this rule have been found. Here, we review experimental results and early theories of resistivity saturation. We then describe more recent theoretical work, addressing cases both where the Ioffe-Regel condition is satisfied and where it is violated. In particular we show how the (semiclassical) Ioffe-Regel condition can be derived quantum-mechanically under certain assumptions about the system and why these assumptions are violated for high-Tc cuprates and alkali-doped fullerides.Comment: 16 pages, RevTeX, 15 eps figures, additional material available at http://www.mpi-stuttgart.mpg.de/andersen/saturation

    Two Loop Scalar Self-Mass during Inflation

    Full text link
    We work in the locally de Sitter background of an inflating universe and consider a massless, minimally coupled scalar with a quartic self-interaction. We use dimensional regularization to compute the fully renormalized scalar self-mass-squared at one and two loop order for a state which is released in Bunch-Davies vacuum at t=0. Although the field strength and coupling constant renormalizations are identical to those of lfat space, the geometry induces a non-zero mass renormalization. The finite part also shows a sort of growing mass that competes with the classical force in eventually turning off this system's super-acceleration.Comment: 31 pages, 5 figures, revtex4, revised for publication with extended list of reference

    The ethics of digital well-being: a multidisciplinary perspective

    Get PDF
    This chapter serves as an introduction to the edited collection of the same name, which includes chapters that explore digital well-being from a range of disciplinary perspectives, including philosophy, psychology, economics, health care, and education. The purpose of this introductory chapter is to provide a short primer on the different disciplinary approaches to the study of well-being. To supplement this primer, we also invited key experts from several disciplines—philosophy, psychology, public policy, and health care—to share their thoughts on what they believe are the most important open questions and ethical issues for the multi-disciplinary study of digital well-being. We also introduce and discuss several themes that we believe will be fundamental to the ongoing study of digital well-being: digital gratitude, automated interventions, and sustainable co-well-being

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore