109 research outputs found

    Extraction and Quantification of Atrazine

    Get PDF
    Undergraduate Basi

    Circuit dissection of the role of somatostatin in itch and pain

    Get PDF
    Stimuli that elicit itch are detected by sensory neurons that innervate the skin. This information is processed by the spinal cord; however, the way in which this occurs is still poorly understood. Here we investigated the neuronal pathways for itch neurotransmission, particularly the contribution of the neuropeptide somatostatin. We find that in the periphery, somatostatin is exclusively expressed in Nppb+ neurons, and we demonstrate that Nppb+somatostatin+ cells function as pruriceptors. Employing chemogenetics, pharmacology and cell-specific ablation methods, we demonstrate that somatostatin potentiates itch by inhibiting inhibitory dynorphin neurons, which results in disinhibition of GRPR+ neurons. Furthermore, elimination of somatostatin from primary afferents and/or from spinal interneurons demonstrates differential involvement of the peptide released from these sources in itch and pain. Our results define the neural circuit underlying somatostatin-induced itch and characterize a contrasting antinociceptive role for the peptide

    Highly Sensitive and Specific Detection of Rare Variants in Mixed Viral Populations from Massively Parallel Sequence Data

    Get PDF
    Viruses diversify over time within hosts, often undercutting the effectiveness of host defenses and therapeutic interventions. To design successful vaccines and therapeutics, it is critical to better understand viral diversification, including comprehensively characterizing the genetic variants in viral intra-host populations and modeling changes from transmission through the course of infection. Massively parallel sequencing technologies can overcome the cost constraints of older sequencing methods and obtain the high sequence coverage needed to detect rare genetic variants (<1%) within an infected host, and to assay variants without prior knowledge. Critical to interpreting deep sequence data sets is the ability to distinguish biological variants from process errors with high sensitivity and specificity. To address this challenge, we describe V-Phaser, an algorithm able to recognize rare biological variants in mixed populations. V-Phaser uses covariation (i.e. phasing) between observed variants to increase sensitivity and an expectation maximization algorithm that iteratively recalibrates base quality scores to increase specificity. Overall, V-Phaser achieved >97% sensitivity and >97% specificity on control read sets. On data derived from a patient after four years of HIV-1 infection, V-Phaser detected 2,015 variants across the ∼10 kb genome, including 603 rare variants (<1% frequency) detected only using phase information. V-Phaser identified variants at frequencies down to 0.2%, comparable to the detection threshold of allele-specific PCR, a method that requires prior knowledge of the variants. The high sensitivity and specificity of V-Phaser enables identifying and tracking changes in low frequency variants in mixed populations such as RNA viruses

    Skin Lesions on Common Bottlenose Dolphins (Tursiops truncatus) from Three Sites in the Northwest Atlantic, USA

    Get PDF
    Skin disease occurs frequently in many cetacean species across the globe; methods to categorize lesions have relied on photo-identification (photo-id), stranding, and by-catch data. The current study used photo-id data from four sampling months during 2009 to estimate skin lesion prevalence and type occurring on bottlenose dolphins (Tursiops truncatus) from three sites along the southeast United States coast [Sarasota Bay, FL (SSB); near Brunswick and Sapelo Island, GA (BSG); and near Charleston, SC (CHS)]. The prevalence of lesions was highest among BSG dolphins (P = 0.587) and lowest in SSB (P = 0.380), and the overall prevalence was significantly different among all sites (p<0.0167). Logistic regression modeling revealed a significant reduction in the odds of lesion occurrence for increasing water temperatures (OR = 0.92; 95%CI:0.906–0.938) and a significantly increased odds of lesion occurrence for BSG dolphins (OR = 1.39; 95%CI:1.203–1.614). Approximately one-third of the lesioned dolphins from each site presented with multiple types, and population differences in lesion type occurrence were observed (p<0.05). Lesions on stranded dolphins were sampled to determine the etiology of different lesion types, which included three visually distinct samples positive for herpesvirus. Although generally considered non-fatal, skin disease may be indicative of animal health or exposure to anthropogenic or environmental threats, and photo-id data provide an efficient and cost-effective approach to document the occurrence of skin lesions in free-ranging populations

    A Novel Immunodominant CD8+ T Cell Response Restricted by a Common HLA-C Allele Targets a Conserved Region of Gag HIV-1 Clade CRF01_AE Infected Thais

    Get PDF
    Background: CD8+ T cell responses play an important role in the control of HIV-1. The extensive sequence diversity of HIV-1 represents a critical hurdle to developing an effective HIV-1 vaccine, and it is likely that regional-specific vaccine strains will be required to overcome the diversity of the different HIV-1 clades distributed world-wide. Unfortunately, little is known about the CD8+ T cell responses against CRF01_AE, which is responsible for the majority of infections in Southeast Asia. Methodology/Principal Findings: To identify dominant CD8+ T cell responses recognized in HIV-1 clade CRF01_AE infected subjects we drew upon data from an immunological screen of 100 HIV-1 clade CRF01_AE infected subjects using IFN-gamma ELISpot to characterize a novel immunodominant CD8+ T cell response in HIV-1 Gag restricted by HLA-Cw*0102 (p24, 277YSPVSILDI 285, YI9). Over 75% of Cw*0102+ve subjects targeted this epitope, representing the strongest response in more than a third of these individuals. This novel CD8 epitope was located in a highly conserved region of HIV-1 Gag known to contain immunodominant CD8 epitopes, which are restricted by HLA-B*57 and -B*27 in clade B infection. Nonetheless, viral escape in this epitope was frequently observed in Cw*0102+ve subjects, suggestive of strong selection pressure being exerted by this common CD8+ T cell response. Conclusions/Significance: As HLA-Cw*0102 is frequently expressed in the Thai population (allelic frequency of 16.8%), this immunodominant Cw*0102-restricted Gag epitope may represent an attractive candidate for vaccines specific to CRF01_AE and may help facilitate further studies of immunopathogenesis in this understudied HIV-1 clade. © 2011 Buranapraditkun et al

    Using social and behavioural science to support COVID-19 pandemic response

    Get PDF
    The COVID-19 pandemic represents a massive global health crisis. Because the crisis requires large-scale behaviour change and places significant psychological burdens on individuals, insights from the social and behavioural sciences can be used to help align human behavior with the recommendations of epidemiologists and public health experts. Here we discuss evidence from a selection of research topics relevant to pandemics, including work on navigating threats, social and cultural influences on behaviour, science communication, moral decision-making, leadership, and stress and coping. In each section, we note the nature and quality of prior research, including uncertainty and unsettled issues. We identify several insights for effective response to the COVID-19 pandemic, and also highlight important gaps researchers should move quickly to fill in the coming weeks and months

    The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.

    Get PDF
    We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology
    corecore