3 research outputs found
Integrating the OHIF Viewer into XNAT: Achievements, Challenges and Prospects for Quantitative Imaging Studies.
Purpose: XNAT is an informatics software platform to support imaging research, particularly in the context of large, multicentre studies of the type that are essential to validate quantitative imaging biomarkers. XNAT provides import, archiving, processing and secure distribution facilities for image and related study data. Until recently, however, modern data visualisation and annotation tools were lacking on the XNAT platform. We describe the background to, and implementation of, an integration of the Open Health Imaging Foundation (OHIF) Viewer into the XNAT environment. We explain the challenges overcome and discuss future prospects for quantitative imaging studies. Materials and methods: The OHIF Viewer adopts an approach based on the DICOM web protocol. To allow operation in an XNAT environment, a data-routing methodology was developed to overcome the mismatch between the DICOM and XNAT information models and a custom viewer panel created to allow navigation within the viewer between different XNAT projects, subjects and imaging sessions. Modifications to the development environment were made to allow developers to test new code more easily against a live XNAT instance. Major new developments focused on the creation and storage of regions-of-interest (ROIs) and included: ROI creation and editing tools for both contour- and mask-based regions; a "smart CT" paintbrush tool; the integration of NVIDIA's Artificial Intelligence Assisted Annotation (AIAA); the ability to view surface meshes, fractional segmentation maps and image overlays; and a rapid image reader tool aimed at radiologists. We have incorporated the OHIF microscopy extension and, in parallel, introduced support for microscopy session types within XNAT for the first time. Results: Integration of the OHIF Viewer within XNAT has been highly successful and numerous additional and enhanced tools have been created in a programme started in 2017 that is still ongoing. The software has been downloaded more than 3700 times during the course of the development work reported here, demonstrating the impact of the work. Conclusions: The OHIF open-source, zero-footprint web viewer has been incorporated into the XNAT platform and is now used at many institutions worldwide. Further innovations are envisaged in the near future
MONAI: An open-source framework for deep learning in healthcare
Artificial Intelligence (AI) is having a tremendous impact across most areas
of science. Applications of AI in healthcare have the potential to improve our
ability to detect, diagnose, prognose, and intervene on human disease. For AI
models to be used clinically, they need to be made safe, reproducible and
robust, and the underlying software framework must be aware of the
particularities (e.g. geometry, physiology, physics) of medical data being
processed. This work introduces MONAI, a freely available, community-supported,
and consortium-led PyTorch-based framework for deep learning in healthcare.
MONAI extends PyTorch to support medical data, with a particular focus on
imaging, and provide purpose-specific AI model architectures, transformations
and utilities that streamline the development and deployment of medical AI
models. MONAI follows best practices for software-development, providing an
easy-to-use, robust, well-documented, and well-tested software framework. MONAI
preserves the simple, additive, and compositional approach of its underlying
PyTorch libraries. MONAI is being used by and receiving contributions from
research, clinical and industrial teams from around the world, who are pursuing
applications spanning nearly every aspect of healthcare.Comment: www.monai.i
MONAI Label:A framework for AI-assisted interactive labeling of 3D medical images
The lack of annotated datasets is a major bottleneck for training new task-specific supervised machine learning models, considering that manual annotation is extremely expensive and time-consuming. To address this problem, we present MONAI Label, a free and open-source framework that facilitates the development of applications based on artificial intelligence (AI) models that aim at reducing the time required to annotate radiology datasets. Through MONAI Label, researchers can develop AI annotation applications focusing on their domain of expertise. It allows researchers to readily deploy their apps as services, which can be made available to clinicians via their preferred user interface. Currently, MONAI Label readily supports locally installed (3D Slicer) and web-based (OHIF) frontends and offers two active learning strategies to facilitate and speed up the training of segmentation algorithms. MONAI Label allows researchers to make incremental improvements to their AI-based annotation application by making them available to other researchers and clinicians alike. Additionally, MONAI Label provides sample AI-based interactive and non-interactive labeling applications, that can be used directly off the shelf, as plug-and-play to any given dataset. Significant reduced annotation times using the interactive model can be observed on two public datasets.</p