4 research outputs found
The EUSO-SPB2 Fluorescence Telescope for the Detection of Ultra-High Energy Cosmic Rays
International audienceThe Extreme Universe Space Observatory on a Super Pressure Balloon 2 (EUSO-SPB2) flew on May 13 and 14 of 2023. Consisting of two novel optical telescopes, the payload utilized next-generation instrumentation for the observations of extensive air showers from near space. One instrument, the fluorescence telescope (FT) searched for Ultra-High Energy Cosmic Rays (UHECRs) by recording the atmosphere below the balloon in the near-UV with a 1~s time resolution using 108 multi-anode photomultiplier tubes with a total of 6,912 channels. Validated by pre-flight measurements during a field campaign, the energy threshold was estimated around 2~EeV with an expected event rate of approximately 1 event per 10 hours of observation. Based on the limited time afloat, the expected number of UHECR observations throughout the flight is between 0 and 2. Consistent with this expectation, no UHECR candidate events have been found. The majority of events appear to be detector artifacts that were not rejected properly due to a shortened commissioning phase. Despite the earlier-than-expected termination of the flight, data were recorded which provide insights into the detectors stability in the near-space environment as well as the diffuse ultraviolet emissivity of the atmosphere, both of which are impactful to future experiments
The EUSO-SPB2 Fluorescence Telescope for the Detection of Ultra-High Energy Cosmic Rays
International audienceThe Extreme Universe Space Observatory on a Super Pressure Balloon 2 (EUSO-SPB2) flew on May 13 and 14 of 2023. Consisting of two novel optical telescopes, the payload utilized next-generation instrumentation for the observations of extensive air showers from near space. One instrument, the fluorescence telescope (FT) searched for Ultra-High Energy Cosmic Rays (UHECRs) by recording the atmosphere below the balloon in the near-UV with a 1~s time resolution using 108 multi-anode photomultiplier tubes with a total of 6,912 channels. Validated by pre-flight measurements during a field campaign, the energy threshold was estimated around 2~EeV with an expected event rate of approximately 1 event per 10 hours of observation. Based on the limited time afloat, the expected number of UHECR observations throughout the flight is between 0 and 2. Consistent with this expectation, no UHECR candidate events have been found. The majority of events appear to be detector artifacts that were not rejected properly due to a shortened commissioning phase. Despite the earlier-than-expected termination of the flight, data were recorded which provide insights into the detectors stability in the near-space environment as well as the diffuse ultraviolet emissivity of the atmosphere, both of which are impactful to future experiments
\u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution
The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu