14 research outputs found

    The Indirect Search for Dark Matter with IceCube

    Full text link
    We revisit the prospects for IceCube and similar kilometer-scale telescopes to detect neutrinos produced by the annihilation of weakly interacting massive dark matter particles (WIMPs) in the Sun. We emphasize that the astrophysics of the problem is understood; models can be observed or, alternatively, ruled out. In searching for a WIMP with spin-independent interactions with ordinary matter, IceCube is only competitive with direct detection experiments if the WIMP mass is sufficiently large. For spin-dependent interactions IceCube already has improved the best limits on spin-dependent WIMP cross sections by two orders of magnitude. This is largely due to the fact that models with significant spin-dependent couplings to protons are the least constrained and, at the same time, the most promising because of the efficient capture of WIMPs in the Sun. We identify models where dark matter particles are beyond the reach of any planned direct detection experiments while being within reach of neutrino telescopes. In summary, we find that, even when contemplating recent direct detection results, neutrino telescopes have the opportunity to play an important as well as complementary role in the search for particle dark matter.Comment: 17 pages, 10 figures, published in the New Journal of Physics 11 105019 http://www.iop.org/EJ/abstract/1367-2630/11/10/105019, new version submitted to correct Abstract in origina

    Determining Supersymmetric Parameters With Dark Matter Experiments

    Get PDF
    In this article, we explore the ability of direct and indirect dark matter experiments to not only detect neutralino dark matter, but to constrain and measure the parameters of supersymmetry. In particular, we explore the relationship between the phenomenological quantities relevant to dark matter experiments, such as the neutralino annihilation and elastic scattering cross sections, and the underlying characteristics of the supersymmetric model, such as the values of mu (and the composition of the lightest neutralino), m_A and tan beta. We explore a broad range of supersymmetric models and then focus on a smaller set of benchmark models. We find that by combining astrophysical observations with collider measurements, mu can often be constrained far more tightly than it can be from LHC data alone. In models in the A-funnel region of parameter space, we find that dark matter experiments can potentially determine m_A to roughly +/-100 GeV, even when heavy neutral MSSM Higgs bosons (A, H_1) cannot be observed at the LHC. The information provided by astrophysical experiments is often highly complementary to the information most easily ascertained at colliders.Comment: 46 pages, 76 figure

    Probing Neutralino Resonance Annihilation via Indirect Detection of Dark Matter

    Full text link
    The lightest neutralino of R-parity conserving supersymmetric models serves as a compelling candidate to account for the presence of cold dark matter in the universe. In the minimal supergravity (mSUGRA) model, a relic density can be found in accord with recent WMAP data for large values of the parameter tanβ\tan\beta, where neutralino annihilation in the early universe occurs via the broad s-channel resonance of the pseudoscalar Higgs boson AA. We map out rates for indirect detection of neutralinos via 1. detection of neutrinos arising from neutralino annihilation in the core of the earth or sun and 2. detection of gamma rays, antiprotons and positrons arising from neutralino annihilation in the galactic halo. If indeed AA-resonance annihilation is the main sink for neutralinos in the early universe, then signals may occur in the gamma ray, antiproton and positron channels, while a signal in the neutrino channel would likely be absent. This is in contrast to the hyperbolic branch/focus point (HB/FP) region where {\it all} indirect detection signals are likely to occur, and also in contrast to the stau co-annihilation region, where {\it none} of the indirect signals are likely to occur.Comment: 12 pages including 4 eps figure

    Dark Matter in the MSSM

    Full text link
    We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied existing experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.Comment: 27 pages, 19 figs; Journal version in NJP issue "Focus on Dark Matter and Particle Physics". Previous version had 26 pages, 19 figures. Text and some figures have been update

    Mass Bounds on a Very Light Neutralino

    Get PDF
    Within the Minimal Supersymmetric Standard Model (MSSM) we systematically investigate the bounds on the mass of the lightest neutralino. We allow for non-universal gaugino masses and thus even consider massless neutralinos, while assuming in general that R-parity is conserved. Our main focus are laboratory constraints. We consider collider data, precision observables, and also rare meson decays to very light neutralinos. We then discuss the astrophysical and cosmological implications. We find that a massless neutralino is allowed by all existing experimental data and astrophysical and cosmological observations.Comment: 36 pages, 13 figures, minor modification in astro-physical bounds. EPJC versio

    Collider, direct and indirect detection of supersymmetric dark matter

    Full text link
    We present an overview of supersymmetry searches, both at collider experiments and via searches for dark matter (DM). We focus on three DM possibilities in the SUSY context: the thermally produced neutralino, a mixture of axion and axino, and the gravitino, and compare and contrast signals that may be expected at colliders, in direct detection (DD) experiments searching of DM relics left over from the Big Bang, and indirect detection (ID) experiments designed to detect the products of DM annihilations within the solar interior or galactic halo. Detection of DM particles using multiple strategies provides complementary information that may shed light on the new physics associated with the dark matter sector. In contrast to the mSUGRA model where the measured cold DM relic density restricts us to special regions mostly on the edge of the m_0-m_{1/2} plane, the entire parameter plane becomes allowed if the universality assumption is relaxed in models with just one additional parameter. Then, thermally produced neutralinos with a well-tempered mix of wino, bino and higgsino components, or with a mass adjusted so that their annihilation in the early universe is Higgs-resonance-enhanced, can be the DM. Well-tempered neutralinos typically yield heightened rates for DD and ID experiments compared to generic predictions from minimal supergravity. If instead DM consists of axinos (possibly together with axions) or gravitinos, then there exists the possibility of detection of quasi-stable next-to-lightest SUSY particles at colliding beam experiments, with especially striking consequences if the NLSP is charged, but no DD or ID detection. The exception for mixed axion/axino DM is that DD of axions may be possible.Comment: 28 pages, 11 eps figures; invited contribution to NJP Focus Issue on "Dark Matter and Particle Physics
    corecore