637 research outputs found
The role of urate and xanthine oxidase in vascular oxidative stress:Future directions
Vascular oxidative stress has been shown to be a potent factor in the pathophysiology of endothelial dysfunction. Despite current optimal evidence-based therapy, mortality from various cardiovascular disorders remains high. The search for newer, novel ways of attenuating endothelial dysfunction has yielded several new and exciting possibilities, one of which is the manipulation of urate levels using xanthine oxidase inhibitors. Agents such as allopurinol have shown marked improvements in vascular endothelial function in various cohorts at risk of cardiovascular events. Most of the evidence so far comes from smaller mechanistic studies. The few large randomized controlled trials have failed to show any significant mortality benefit using these agents. This article highlights the potential avenues of further research such as dose-response, and the potential for these agents to regress left ventricular hypertrophy. The role of newer agents such as febuxostat and oxypurinol are discussed as well as potential reasons why some of the current newer agents have failed to live up to the promising early-phase data. It is crucial that these remaining questions surrounding urate, xanthine oxidase and the role of various agents that affect this important oxidative stress-generating system are answered, and therefore these promising agents should not be discarded prematurely
Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress
Oxidative stress plays an important role in the progression of vascular endothelial dysfunction. The two major systems generating vascular oxidative stress are the NADPH oxidase and the xanthine oxidase pathways. Allopurinol, a xanthine oxidase inhibitor, has been in clinical use for over 40 years in the treatment of chronic gout. Allopurinol has also been shown to improve endothelial dysfunction, reduce oxidative stress burden and improve myocardial efficiency by reducing oxygen consumption in smaller mechanistic studies involving various cohorts at risk of cardiovascular events. This article aims to explain the role of xanthine oxidase in vascular oxidative stress and to explore the mechanisms by which allopurinol is thought to improve vascular and myocardial indices
Recursive integral method for transmission eigenvalues
Recently, a new eigenvalue problem, called the transmission eigenvalue
problem, has attracted many researchers. The problem arose in inverse
scattering theory for inhomogeneous media and has important applications in a
variety of inverse problems for target identification and nondestructive
testing. The problem is numerically challenging because it is non-selfadjoint
and nonlinear. In this paper, we propose a recursive integral method for
computing transmission eigenvalues from a finite element discretization of the
continuous problem. The method, which overcomes some difficulties of existing
methods, is based on eigenprojectors of compact operators. It is
self-correcting, can separate nearby eigenvalues, and does not require an
initial approximation based on some a priori spectral information. These
features make the method well suited for the transmission eigenvalue problem
whose spectrum is complicated. Numerical examples show that the method is
effective and robust.Comment: 18 pages, 8 figure
Effect of allopurinol on phosphocreatine recovery and muscle function in older people with impaired physical function:a randomised controlled trial
Background: Allopurinol has vascular antioxidant effects and participates in purinergic signalling within muscle. We tested whether allopurinol could improve skeletal muscle energetics and physical function in older people with impaired physical performance. Methods: We conducted a randomised, double blind, parallel group, placebo-controlled trial, comparing 20 weeks of allopurinol 600 mg once daily versus placebo. We recruited community-dwelling participants aged 65 and over with baseline 6-min walk distance of <400 m and no contraindications to magnetic resonance imaging scanning. Outcomes were measured at baseline and 20 weeks. The primary outcome was post-exercise phosphocreatine (PCr) recovery rate measured using 31P magnetic resonance spectroscopy of the calf. Secondary outcomes included 6-min walk distance, short physical performance battery (SPPB), lean body mass measured by bioimpedance, endothelial function and quality of life. Results: In total, 124 participants were randomised, mean age 80 (SD 6) years. A total of 59 (48%) were female, baseline 6-min walk distance was 293 m (SD 80 m) and baseline SPPB was 8.5 (SD 2.0). Allopurinol did not significantly improve PCr recovery rate (treatment effect 0.10 units [95% CI, −0.07 to 0.27], P = 0.25). No significant changes were seen in endothelial function, quality of life, lean body mass or SPPB. Allopurinol improved 6-min walk distance (treatment effect 25 m [95% 4–46, P = 0.02]). This was more pronounced in those with high baseline oxidative stress and urate. Conclusion: Allopurinol improved 6-min walk distance but not PCr recovery rate in older people with impaired physical function. Antioxidant strategies to improve muscle function for older people may need to be targeted at subgroups with high baseline oxidative stress. </p
QT peak prolongation predicts cardiac death following stroke
Cardiac death has been linked in many populations to prolongation of the QT interval (QTe). However, basic science research suggested that the best estimate of the time point when repolarisation begins is near the T-wave peak. We found QT peak (QTp) was longer in hypertensive subjects with LVH. A prolonged “depolarisation” phase, rather than “repolarisation” (T peak to T end) might therefore account for the higher incidence of cardiac death linked to long QT. Hypothesis: We have tested the hypothesis that QT peak (QTp) prolongation predicts cardiac death in stroke survivors. Methods and Results: ECGs were recorded from 296 stroke survivors (152 male), mean age 67.2 (SD 11.6) approximately 1 year after the event. Their mean blood pressure was 152/88 mmHg (SD 29/15mmHg). These ECGs were digitised by one observer who was blinded to patient outcome. The patients were followed up for a median of 3.3 years. The primary endpoint was cardiac death. A prolonged heart rate corrected QT peak (QTpc) of lead I carried the highest relative risk of death from all cause as well as cardiac death, when compared with the other more conventional QT indices. In multivariate analyses, when adjusted for conventional risk factors of atherosclerosis, a prolonged QTpc of lead I was still associated with a 3-fold increased risk of cardiac death. (adjusted relative risk 3.0 [95% CI 1.1 - 8.5], p=0.037). Conclusion: QT peak prolongation in lead I predicts cardiac death after strok
Assessment of proximal pulmonary arterial stiffness using magnetic resonance imaging:effects of technique, age and exercise
INTRODUCTION: To compare the reproducibility of pulmonary pulse wave velocity (PWV) techniques, and the effects of age and exercise on these. METHODS: 10 young healthy volunteers (YHV) and 20 older healthy volunteers (OHV) with no cardiac or lung condition were recruited. High temporal resolution phase contrast sequences were performed through the main pulmonary arteries (MPAs), right pulmonary arteries (RPAs) and left pulmonary arteries (LPAs), while high spatial resolution sequences were obtained through the MPA. YHV underwent 2 MRIs 6 months apart with the sequences repeated during exercise. OHV underwent an MRI scan with on-table repetition. PWV was calculated using the transit time (TT) and flow area techniques (QA). 3 methods for calculating QA PWV were compared. RESULTS: PWV did not differ between the two age groups (YHV 2.4±0.3/ms, OHV 2.9±0.2/ms, p=0.1). Using a high temporal resolution sequence through the RPA using the QA accounting for wave reflections yielded consistently better within-scan, interscan, intraobserver and interobserver reproducibility. Exercise did not result in a change in either TT PWV (mean (95% CI) of the differences: −0.42 (−1.2 to 0.4), p=0.24) or QA PWV (mean (95% CI) of the differences: 0.10 (−0.5 to 0.9), p=0.49) despite a significant rise in heart rate (65±2 to 87±3, p<0.0001), blood pressure (113/68 to 130/84, p<0.0001) and cardiac output (5.4±0.4 to 6.7±0.6 L/min, p=0.004). CONCLUSIONS: QA PWV performed through the RPA using a high temporal resolution sequence accounting for wave reflections yields the most reproducible measurements of pulmonary PWV
Allopurinol treatment adversely impacts left ventricular mass regression in patients with well-controlled hypertension
Objectives: Previous studies have demonstrated that high dose allopurinol is able to regress Left Ventricular (LV) mass in cohorts with established cardiovascular disease. The aim of this study was to assess whether treatment with high dose allopurinol would regress LV mass in a cohort with essential hypertension, LV hypertrophy and well- controlled blood pressure but without established cardiovascular disease.Methods: We conducted a mechanistic proof-of-concept randomised, placebo controlled, double-blind trial of allopurinol (600mg/day) versus placebo on LV mass regression. Duration of treatment was 12 months. LV mass regression was assessed by Cardiac Magnetic Resonance. Secondary outcomes were changes in endothelial function (flow mediated dilatation), arterial stiffness (pulse wave velocity) and biomarkers of oxidative stress. Results: 72 patients were randomised into the trial. Mean baseline urate was 362.2 ± 96.7umol/L. Despite good blood pressure control, LV mass regression was significantly reduced in the allopurinol cohort compared to placebo (LV mass -0.37 ± 6.08 g vs -3.75 ± 3.89 g; p=0.012). Oxidative stress markers (Thiobarbituric acid reactive substances) were significantly higher in the allopurinol group vs placebo (0.26 ± 0.85uM vs -0.34 ± 0.83uM; p=0.007). Other markers of vascular function were not significantly different between the two groups.Conclusions: Treatment with high dose allopurinol in normo-uricemic controlled hypertensive patients and LV hypertrophy is detrimental. It results in reduced LV mass regression and increased oxidative stress over a 12-month period. This may be due to an adverse impact on redox balance. Cohort selection for future cardiovascular trials with allopurinol is crucial.<br/
Towards understanding the clinical significance of QT peak prolongation: a novel marker of myocardial ischemia independently demonstrated in two prospective studies
Background: QT peak prolongation identified patients at risk of death or non-fatal MI. We tested the hypothesis that QT peak prolongation might be associated with significant myocardial ischaemia in two separate cohorts to see how widely applicable the concept was. Methods and Results: In the first study, 134 stroke survivors were prospectively recruited and had 12-lead ECGs and Nuclear myocardial perfusion scanning. QT peak was measured in lead I of a 12-lead ECG and heart rate corrected by Bazett’s formula (QTpc). QTpc prolongation to 360ms or more was 92% specific at diagnosing severe myocardial ischaemia. This hypothesis-generating study led us to perform a second prospective study in a different cohort of patients who were referred for dobutamine stress echocardiography. 13 of 102 patients had significant myocardial ischaemia. Significant myocardial ischaemia was associated with QT peak prolongation at rest (mean 354ms, 95% CI 341-367ms, compared with mean 332ms, 95% CI 327-337ms in those without significant ischaemia; p=0.002). QT peak prolongation to 360ms or more was 88% specific at diagnosing significant myocardial ischaemia in the stress echocardiography study. QT peak prolongation to 360ms or more was associated with over 4-fold increase odds ratio of significant myocardial ischaemia. The Mantel- Haenszel Common Odds Ratio Estimate=4.4, 95% CI=1.2-16.0, p=0.023. Conclusion: QT peak (QTpc) prolongation to 360ms or more should make us suspect the presence of significant myocardial ischaemia. Such patients merit further investigations for potentially treatable ischaemic heart disease to reduce their risk of subsequent death or non-fatal MI
- …
