3 research outputs found

    An Empirical Evaluation of Data Interoperability—A Case of the Disaster Management Sector in Uganda

    No full text
    One of the grand challenges of disaster management is for stakeholders to be able to discover, access, integrate and analyze task-appropriate data together with their associated algorithms and work-flows. Even with a growing number of initiatives to publish data in the disaster management sector using open principles, integration and reuse are still difficult due to existing interoperability barriers within datasets. Several frameworks for assessing data interoperability exist but do not generate best practice solutions to existing barriers based on the assessment they use. In this study, we assess interoperability for datasets in the disaster management sector in Uganda and identify generic solutions to interoperability challenges in the context of disaster management. Semi-structured interviews and focus group discussions were used to collect qualitative data from sector stakeholders in Uganda. Data interoperability was measured to provide an understanding of interoperability in the sector. Interoperability maturity is measured using qualitative methods, while data compatibility metrics are computed from identifiers in the RDF-triple model. Results indicate high syntactic and technical interoperability maturity for data in the sector. On the contrary, there exists considerable semantic and legal interoperability barriers that hinder data integration and reuse in the sector. A mapping of the interoperability challenges in the disaster management sector to solutions reveals a potential to reuse established patterns for managing data interoperability. These include; the federated pattern, linked data patterns, broadcast pattern, rights and policy harmonization patterns, dissemination and awareness pattern, ontology design patterns among others. Thus a systematic approach to combining patterns is critical to managing data interoperability barriers among actors in the disaster management ecosystem

    Determination of Satellite-Derived PM<sub>2.5</sub> for Kampala District, Uganda

    No full text
    Ground monitoring stations are widely used to monitor particulate matter (PM2.5). However, they are expensive to maintain and provide information localized to the stations, and hence are limited for large-scale use. Analysis of in situ PM2.5 shows that it varies spatially and temporally with distinct seasonal differences. This study, therefore, explored the use of satellite images (Sentinel-2 and Landsat-8) for determining the spatial and temporal variations in PM2.5 for Kampala District in Uganda. Firstly, satellite-derived aerosol optical depth (AOD) was computed using the Code for High Resolution Satellite mapping of optical Thickness and aNgstrom Exponent algorithm (CHRISTINE code). The derived AOD was then characterised with reference to meteorological factors and then correlated with in situ PM2.5 to determine satellite-derived PM2.5 using geographically weighted regression. In the results, correlating in situ PM2.5 and AOD revealed that the relationship is highly variable over time and thus needs to be modelled for each satellite’s overpass time, rather than having a generic model fitting, say, a season. The satellite-derived PM2.5 showed good model performance with coefficient of correlation (R2) values from 0.69 to 0.89. Furthermore, Sentinel-2 data produced better predictions, signifying that increasing the spatial resolution can improve satellite-derived PM2.5 estimations
    corecore