4,242 research outputs found

    Everyone Counts Diversity Learning Community 2013-14 Race, Privilege, and Power

    Get PDF
    Photo-Voice Project What does privilege look like at WMU? This was the question posed by Dr. Allan G. Johnson during the kick-off event for the Learning Communities

    Generation of Mars Helicopter Rotor Model for Comprehensive Analyses

    Get PDF
    The present research is aimed at providing a performance model for the Mars Helicopter (MH), to understand the complexity of the flow, and identify future regions of improvement. The low density of the Martian atmosphere and the relatively small MH rotor, result in very low chord-based Reynolds number flows. The low density and Reynolds numbers reduce the lifting force and lifting efficiency, respectively. The high drag coefficients in subcritical flow, especially for thicker sections, are attributed to laminar separation from the rear of the airfoil. In the absence of test data, efforts have been made to explore these effects using prior very low Reynolds number research efforts. The rotor chord-based Reynolds number range is observed to be subcritical, which makes boundary layer transition unlikely to occur. The state of the two-dimensional rotor boundary layer in hover is approximated by calculating the instability point, laminar separation point, and the transition location to provide understanding of the flow state in the high Mach-low Reynolds number regime. The results are used to investigate the need for turbulence modeling in Computational Fluid Dynamics (CFD) calculations afterwards. The goal is to generate a performance model for the MH rotor for a free wake analysis, because the computational budget for a complete Navier-Stokes solution for a rotating body-fitted rotor is substantial. In this study, a Reynolds-Averaged Navier-Stokes (RANS) based approach is used to generate the airfoil deck using C81Gen with stitched experimental data for very high angles of attack. A full Grid Resolution Study is performed and over 4,500 cases are completed to create the full airfoil deck. The laminar separation locations are predicted within the accuracy of the approximate method when compared with the CFD calculations. The model is presented through airfoil data tables (c81 files) that are used by comprehensive rotor analysis codes such as CAMRADII, or the mid-fidelity CFD solver RotCFD. Finally, the rotor performance is compared with experimental data from the 25ft Space Simulator at the NASA Jet Propulsion Laboratory (JPL) and shows good correlation for the rotor Figure of Merit over the available thrust range

    Computerized Nurse Charting

    Get PDF
    journal articleBiomedical Informatic

    The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain

    Get PDF
    The goal of the INCF Digital Atlasing Program is to provide the vision and direction necessary to make the rapidly growing collection of multidimensional data of the rodent brain (images, gene expression, etc.) widely accessible and usable to the international research community. This Digital Brain Atlasing Standards Task Force was formed in May 2008 to investigate the state of rodent brain digital atlasing, and formulate standards, guidelines, and policy recommendations.

Our first objective has been the preparation of a detailed document that includes the vision and specific description of an infrastructure, systems and methods capable of serving the scientific goals of the community, as well as practical issues for achieving
the goals. This report builds on the 1st INCF Workshop on Mouse and Rat Brain Digital Atlasing Systems (Boline et al., 2007, _Nature Preceedings_, doi:10.1038/npre.2007.1046.1) and includes a more detailed analysis of both the current state and desired state of digital atlasing along with specific recommendations for achieving these goals

    Chinese Students in American Libraries: A Survey of Chinese User Satisfaction with U.S. Academic Library Experience

    Get PDF
    While scholarship has addressed issues around serving international students in U.S. libraries, until recently, relatively little attention has been directly focused upon the library needs of specific ethnic groups. This study surveys 83 Chinese students and scholars after they returned from studying at universities in the United States to measure and document their satisfaction with the library services and resources they used during their study abroad. Results of the survey are analyzed with the goal of benchmarking and improving services for this growing library user population in the United States

    Fudan and Appalachian Library Exchange Program 2009 to 2012

    Get PDF
    Describes the exchange program between Fudan University Library and the University Libraries at Appalachian State University, 2009-2012. The exchange resulted in several scholarly publications and enhanced cultural awareness on both campuses

    Direct characterisation of tuneable few-femtosecond dispersive-wave pulses in the deep UV

    Get PDF
    Dispersive wave emission (DWE) in gas-filled hollow-core dielectric waveguides is a promising source of tuneable coherent and broadband radiation, but so far the generation of few-femtosecond pulses using this technique has not been demonstrated. Using in-vacuum frequency-resolved optical gating, we directly characterise tuneable 3fs pulses in the deep ultraviolet generated via DWE. Through numerical simulations, we identify that the use of a pressure gradient in the waveguide is critical for the generation of short pulses.Comment: 5 pages, 4 figure

    Separable Dual Space Gaussian Pseudo-potentials

    Full text link
    We present pseudo-potential coefficients for the first two rows of the periodic table. The pseudo potential is of a novel analytic form, that gives optimal efficiency in numerical calculations using plane waves as basis set. At most 7 coefficients are necessary to specify its analytic form. It is separable and has optimal decay properties in both real and Fourier space. Because of this property, the application of the nonlocal part of the pseudo-potential to a wave-function can be done in an efficient way on a grid in real space. Real space integration is much faster for large systems than ordinary multiplication in Fourier space since it shows only quadratic scaling with respect to the size of the system. We systematically verify the high accuracy of these pseudo-potentials by extensive atomic and molecular test calculations.Comment: 16 pages, 4 postscript figure
    corecore