167 research outputs found

    Neural-Augmented Static Analysis of Android Communication

    Full text link
    We address the problem of discovering communication links between applications in the popular Android mobile operating system, an important problem for security and privacy in Android. Any scalable static analysis in this complex setting is bound to produce an excessive amount of false-positives, rendering it impractical. To improve precision, we propose to augment static analysis with a trained neural-network model that estimates the probability that a communication link truly exists. We describe a neural-network architecture that encodes abstractions of communicating objects in two applications and estimates the probability with which a link indeed exists. At the heart of our architecture are type-directed encoders (TDE), a general framework for elegantly constructing encoders of a compound data type by recursively composing encoders for its constituent types. We evaluate our approach on a large corpus of Android applications, and demonstrate that it achieves very high accuracy. Further, we conduct thorough interpretability studies to understand the internals of the learned neural networks.Comment: Appears in Proceedings of the 2018 ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE

    Learning Natural Coding Conventions

    Full text link
    Every programmer has a characteristic style, ranging from preferences about identifier naming to preferences about object relationships and design patterns. Coding conventions define a consistent syntactic style, fostering readability and hence maintainability. When collaborating, programmers strive to obey a project's coding conventions. However, one third of reviews of changes contain feedback about coding conventions, indicating that programmers do not always follow them and that project members care deeply about adherence. Unfortunately, programmers are often unaware of coding conventions because inferring them requires a global view, one that aggregates the many local decisions programmers make and identifies emergent consensus on style. We present NATURALIZE, a framework that learns the style of a codebase, and suggests revisions to improve stylistic consistency. NATURALIZE builds on recent work in applying statistical natural language processing to source code. We apply NATURALIZE to suggest natural identifier names and formatting conventions. We present four tools focused on ensuring natural code during development and release management, including code review. NATURALIZE achieves 94% accuracy in its top suggestions for identifier names and can even transfer knowledge about conventions across projects, leveraging a corpus of 10,968 open source projects. We used NATURALIZE to generate 18 patches for 5 open source projects: 14 were accepted
    corecore