93 research outputs found
An investigation of the effects of lipid-lowering medications: genome-wide linkage analysis of lipids in the HyperGEN study
BACKGROUND: Use of anti-hyperlipidemic medications compromises genetic analysis because of altered lipid profiles. We propose an empirical method to adjust lipid levels for medication effects so that the adjusted lipid values substitute the unmedicated lipid values in the genetic analysis. RESULTS: Published clinical trials were reviewed for HMG-CoA reductase inhibitors and fibric acid derivatives as mono-drug therapy. HMG-CoA reductase inhibitors showed similar effects in African Americans (AA) and non-African Americans (non-AA) for lowering total cholesterol (TC, -50.7 mg/dl), LDL cholesterol (LDL-C, -48.1 mg/dl), and triglycerides (TG, -19.7 mg/dl). Their effect on increasing HDL cholesterol (HDL-C) in AA (+0.4 mg/dl) was lower than in Non-AA (+2.3 mg/dl). The effects of fibric acid derivatives were estimated as -46.1 mg/dl for TC, -40.1 mg/dl for LDL-C, and +5.9 mg/dl for HDL-C in non-AA. The corresponding effects in AA were less extreme (-20.1 mg/dl, -11.4 mg/dl, and +3.1 mg/dl). Similar effect for TG (59.0 mg/dl) was shown in AA and non-AA. The above estimated effects were applied to a multipoint variance components linkage analysis on the lipid levels in 2,403 Whites and 2,214 AA in the HyperGEN study. The familial effects did vary depending on whether the lipids were adjusted for medication use. For example, the heritabilities increased after medication adjustment for TC and LDL-C, but did not change significantly for HDL-C and TG. CONCLUSION: Ethnicity-specific medication adjustments using our empirical method can be employed in epidemiological and genetic analysis of lipids.National Heart, Lung, and Blood Institute (HL554471, HL54472, HL54473, HL54495, HL54496, HL54497, HL54509, HL54515
Modular protein-RNA interactions regulating mRNA metabolism: a role for NMR
Here we review the role played by transient interactions between multi-functional proteins and their RNA targets in the regulation of mRNA metabolism, and we describe the important function of NMR spectroscopy in the study of these systems. We place emphasis on a general approach for the study of different features of modular multi-domain recognition that uses well-established NMR techniques and that has provided important advances in the general understanding of post-transcriptional regulation
Structure of stem-loop IV of Tetrahymena telomerase RNA
Conserved domains within the RNA component of telomerase provide the template for reverse transcription, recruit protein components to the holoenzyme and are required for enzymatic activity. Among the functionally essential domains in ciliate telomerase RNA is stem-loop IV, which strongly stimulates telomerase activity and processivity even when provided in trans. The NMR structure of Tetrahymena thermophila stem-loop IV shows a highly structured distal stem-loop linked to a conformationally flexible template-proximal region by a bulge that severely kinks the entire RNA. Through extensive structure–function studies, we identify residues that contribute to both these structural features and to enzymatic activity, with no apparent effect on the binding of TERT protein. We propose that the bending induced by the GA bulge and the flexibility of the template-proximal region allow positioning of the prestructured apical loop during the catalytic cycle
- …