19 research outputs found

    Ion-assisted deposition of amorphous PbO layers

    Get PDF
    The publisher's version of this article can be viewed at https://link.springer.com/article/10.1007/s10853-017-0998-5 A read-only accessible version of this article can be viewed with this SharedIt link at http://rdcu.be/tB19Lead oxide (PbO) is one of the most promising materials for application in direct conversion medical imaging X-ray detectors. Despite its high potential, conventional polycrystalline PbO layers deposited with the basic thermal evaporation method are not yet mature for practical use in X-ray imaging; indeed, they are highly porous, unstable at ambient conditions, and substoichiometric. In order to combat the above issues with PbO, we advance the basic evaporation process with simultaneous energetic ion bombardment of the growing film. We show that tuning the ion-assisted thermal deposition not only solves the structural problems of poly-PbO, but also enables the growth of a new non-crystalline polymorphic form of the material—amorphous PbO (a-PbO). In contrast to poly-PbO, novel a-PbO layers grown by ion-assisted thermal deposition are stable at ambient conditions. Structural and morphological analysis confirms that a-PbO is stoichiometric and free of detectable voids, which suggests higher bulk X-ray stopping power than porous poly-PbO

    Image quality evaluation for a clinical organ-targeted PET camera

    Get PDF
    IntroductionA newly developed clinical organ-targeted Positron Emission Tomography (PET) system (also known as Radialis PET) is tested with a set of standardized and custom tests previously used to evaluate the performance of Positron Emission Mammography (PEM) systems.MethodsImaging characteristics impacting standardized uptake value (SUV) and detectability of small lesions, namely spatial resolution, linearity, uniformity, and recovery coefficients, are evaluated.ResultsIn-plane spatial resolution was measured as 2.3 mm ± 0.1 mm, spatial accuracy was 0.1 mm, and uniformity measured with flood field and NEMA NU-4 phantom was 11.7% and 8.3% respectively. Selected clinical images are provided as reference to the imaging capabilities under different clinical conditions such as reduced activity of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG) and time-delayed acquisitions. SUV measurements were performed for selected clinical acquisitions to demonstrate a capability for quantitative image assessment of different types of cancer including for invasive lobular carcinoma with comparatively low metabolic activity. Quantitative imaging performance assessment with phantoms demonstrates improved contrast recovery and spill-over ratio for this PET technology when compared to other commercial organ-dedicated PET systems with similar spatial resolution. Recovery coefficients were measured to be 0.21 for the 1 mm hot rod and up to 0.89 for the 5 mm hot rod of NEMA NU-4 Image Quality phantom.DiscussionDemonstrated ability to accurately reconstruct activity in tumors as small as 5 mm suggests that the Radialis PET technology may be well suited for emerging clinical applications such as image guided assessment of response to neoadjuvant systemic treatment (NST) in lesions smaller than 2 cm. Also, our results suggest that, while spatial resolution greatly influences the partial volume effect which degrades contrast recovery, optimized count rate performance and image reconstruction workflow may improve recovery coefficients for systems with comparable spatial resolution. We emphasize that recovery coefficient should be considered as a primary performance metric when a PET system is used for accurate lesion size or radiotracer uptake assessments

    Amorphous and Polycrystalline Photoconductors for Direct Conversion Flat Panel X-Ray Image Sensors

    Get PDF
    In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs). We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se) has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE). Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF) and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI2 and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the HARP has been recently demonstrated with excellent avalanche gains; the latter is expected to lead to a number of novel imaging device applications that would be quantum noise limited. While passive pixel sensors use one TFT (thin film transistor) as a switch at the pixel, active pixel sensors (APSs) have two or more transistors and provide gain at the pixel level. The advantages of APS based x-ray imagers are also discussed with examples

    Roadmap on chalcogenide photonics

    Get PDF
    Alloys of sulfur, selenium and tellurium, often referred to as chalcogenide semiconductors, offer a highly versatile, compositionally-controllable material platform for a variety of passive and active photonic applications. They are optically nonlinear, photoconductive materials with wide transmission windows that present various high- and low-index dielectric, low-epsilon and plasmonic properties across ultra-violet, visible and infrared frequencies, in addition to an, non-volatile, electrically/optically induced switching capability between phase states with markedly different electromagnetic properties. This roadmap collection presents an in-depth account of the critical role that chalcogenide semiconductors play within various traditional and emerging photonic technology platforms. The potential of this field going forward is demonstrated by presenting context and outlook on selected socio-economically important research streams utilizing chalcogenide semiconductors. To this end, this roadmap encompasses selected topics that range from systematic design of material properties and switching kinetics to device-level nanostructuring and integration within various photonic system architectures

    Bilayer lead oxide X-ray photoconductor for lag-free operation

    Full text link
    Polycrystalline Lead Oxide (poly-PbO) was considered one of the most promising photoconductors for the direct conversion X-ray medical imaging detectors due to its previous success in optical imaging, i.e., as an optical target in so-called Plumbicon video pick-up tubes. However, a signal lag which accompanies X-ray excitation, makes poly-PbO inapplicable as an X-ray-to-charge transducer in real-time X-ray imaging. In contrast, the recently synthesized Amorphous Lead Oxide (a-PbO) photoconductor is essentially lag-free. Here, we report on our approach to a PbO detector where a thin layer of a-PbO is combined with a thick layer of poly-PbO for lag-free operation. In the presented a-PbO/poly-PbO bilayer structure, the poly-PbO layer serves as an X-ray-to-charge transducer while the a-PbO acts as a lag prevention layer. The hole mobility in the a-PbO/poly-PbO bilayer structure was measured by photo-Charge Extraction by Linearly Increasing Voltage technique at different temperatures and electric fields to investigate charge transport properties. It was found that the hole mobility is similar to that in a-Se—currently the only commercially viable photoconductor for the direct conversion X-ray detectors. Evaluation of the X-ray temporal performance demonstrated complete suppression of signal lag, allowing operation of the a-PbO/poly-PbO detector in real-time imaging

    Comparative Analysis of Multilayer Lead Oxide-Based X-ray Detector Prototypes

    Full text link
    Lead oxide (PbO) photoconductors are proposed as X-ray-to-charge transducers for the next generation of direct conversion digital X-ray detectors. Optimized PbO-based detectors have potential for utilization in high-energy and dynamic applications of medical X-ray imaging. Two polymorphs of PbO have been considered so far for imaging applications: polycrystalline lead oxide (poly-PbO) and amorphous lead oxide (a-PbO). Here, we provide the comparative analysis of two PbO-based single-pixel X-ray detector prototypes: one prototype employs only a layer of a-PbO as the photoconductor while the other has a combination of a-PbO and poly-PbO, forming a photoconductive bilayer structure of the same overall thickness as in the first prototype. We characterize the performance of these prototypes in terms of electron–hole creation energy (W±) and signal lag—major properties that define a material’s suitability for low-dose real-time imaging. The results demonstrate that both X-ray photoconductive structures have an adequate temporal response suitable for real-time X-ray imaging, combined with high intrinsic sensitivity. These results are discussed in the context of structural and morphological properties of PbO to better understand the preparation–fabrication–property relationships of this material

    Evaluation of a High-Sensitivity Organ-Targeted PET Camera

    Full text link
    The aim of this study is to evaluate the performance of the Radialis organ-targeted positron emission tomography (PET) Camera with standardized tests and through assessment of clinical-imaging results. Sensitivity, count-rate performance, and spatial resolution were evaluated according to the National Electrical Manufacturers Association (NEMA) NU-4 standards, with necessary modifications to accommodate the planar detector design. The detectability of small objects was shown with micro hotspot phantom images. The clinical performance of the camera was also demonstrated through breast cancer images acquired with varying injected doses of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG) and qualitatively compared with sample digital full-field mammography, magnetic resonance imaging (MRI), and whole-body (WB) PET images. Micro hotspot phantom sources were visualized down to 1.35 mm-diameter rods. Spatial resolution was calculated to be 2.3 ± 0.1 mm for the in-plane resolution and 6.8 ± 0.1 mm for the cross-plane resolution using maximum likelihood expectation maximization (MLEM) reconstruction. The system peak noise equivalent count rate was 17.8 kcps at a 18F-FDG concentration of 10.5 kBq/mL. System scatter fraction was 24%. The overall efficiency at the peak noise equivalent count rate was 5400 cps/MBq. The maximum axial sensitivity achieved was 3.5%, with an average system sensitivity of 2.4%. Selected results from clinical trials demonstrate capability of imaging lesions at the chest wall and identifying false-negative X-ray findings and false-positive MRI findings, even at up to a 10-fold dose reduction in comparison with standard 18F-FDG doses (i.e., at 37 MBq or 1 mCi). The evaluation of the organ-targeted Radialis PET Camera indicates that it is a promising technology for high-image-quality, low-dose PET imaging. High-efficiency radiotracer detection also opens an opportunity to reduce administered doses of radiopharmaceuticals and, therefore, patient exposure to radiation

    Genome Analysis of F. nucleatum sub spp vincentii and Its Comparison With the Genome of F. nucleatum ATCC 25586

    Full text link
    We present the draft genome sequence and its analysis for Fusobacterium nucleatum sub spp. vincentii (FNV), and compare that genome with F. nucleatum ATCC 25586 (FN). A total of 441 FNV open reading frames (ORFs) with no orthologs in FN have been identified. Of these, 118 ORFs have no known function and are unique to FNV, whereas 323 ORFs have functional orthologs in other organisms. In addition to the excretion of butyrate, H(2)S and ammonia-like FN, FNV has the additional capability to excrete lactate and aminobutyrate. Unlike FN, FNV is likely to incorporate galactopyranose, galacturonate, and sialic acid into its O-antigen. It appears to transport ferrous iron by an anaerobic ferrous transporter. Genes for eukaryotic type serine/threonine kinase and phosphatase, transpeptidase E-transglycosylase Pbp1A are found in FNV but not in FN. Unique ABC transporters, cryptic phages, and three types of restriction-modification systems have been identified in FNV. ORFs for ethanolamine utilization, thermostable carboxypeptidase, Îł glutamyl-transpeptidase, and deblocking aminopeptidases are absent from FNV. FNV, like FN, lacks the classical catalase-peroxidase system, but thioredoxin/glutaredoxin enzymes might alleviate oxidative stress. Genes for resistance to antibiotics such as acriflavin, bacitracin, bleomycin, daunorubicin, florfenicol, and other general multidrug resistance are present. These capabilities allow Fusobacteria to survive in a mixed culture in the mouth
    corecore