2 research outputs found

    Haptic Systems: Trends and Lessons Learned for Haptics in Spacesuits

    Get PDF
    Haptic technology uses forces, vibrations, and movements to simulate a sense of touch. In the context of spacesuits, proposals to use haptic systems are scant despite evidence of their efficacy in other domains. Existing review studies have sought to summarize existing haptic system applications. Despite their contributions to the body of knowledge, existing studies have not assessed the applicability of existing haptic systems in spacesuit design to meet contemporary challenges. This study asks, “What can we learn from existing haptic technologies to create spacesuits?”. As such, we examine academic and commercial haptic systems to address this issue and draw insights for spacesuit design. The study shows that kinesthetic and tactile haptic systems have been effectively utilized in various domains, including healthcare, gaming, and education to improve the sense of touch and terrain and reduce sensory deprivation. Subjective and objective evaluation methods have been utilized to assess the efficacy and safety of haptic systems. Furthermore, this study discusses the usefulness, safety, and applicability of haptics in spacesuits and the implications for research into space haptics

    Influence of COVID-19 on lifestyle behaviors in the Middle East and North Africa Region: a survey of 5896 individuals

    Full text link
    Background: Coronavirus disease (COVID-19) pandemic has affected health and lifestyle behaviors of people globally. This project aims to identify the impact of COVID-19 on lifestyle behavior of individuals in the Middle East and North Africa (MENA) region during confinement. Methods: We conducted an online survey in 17 countries (Egypt, Jordan, United Arab Emirates, Kuwait, Bahrain, Saudi Arabia, Oman, Qatar, Yemen, Syria, Palestine, Algeria, Morocco, Libya, Tunisia, Iraq, and Sudan) from the MENA region on August and September 2020. The questionnaire included self-reported information on lifestyle behaviors, including physical activity, eating habits, smoking, watching television, social media use and sleep before and during the pandemic. Logistic regression was performed to analyze the impact of COVID-19 on lifestyle behaviors. Results: A total of 5896 participants were included in the final analysis and 62.8% were females. The BMI of the participants was 25.4 ± 5.8 kg/m2. Around 38.4% of the participants stopped practicing any physical activities during the confinement (P < 0.001), and 57.1% reported spending more than 2 h on social media (P < 0.001). There were no significant changes in smoking habits. Also, 30.9% reported an improvement in their eating habits compared with 24.8% reported worsening of their eating habits. Fast-food consumption decreased significantly in 48.8% of the study population. This direct/indirect exposure to COVID-19 was associated with an increased consumption of carbohydrates (OR = 1.09; 95% CI = 1.02–1.17; P = 0.01), egg (OR = 1.08; 95% CI = 1.02–1.16; P = 0.01), sugar (OR = 1.09; 95% CI = 1.02–1.16; P = 0.02), meat, and poultry (OR = 1.13; 95% CI = 1.06–1.20; P < 0.01). There was also associated increase in hours spent on watching television (OR = 1.07; 95% CI = 1.02–1.12; P < 0.01) and social media (OR = 1.09; 95% CI = 1.01–1.18; P = 0.03). However, our results showed a reduction in sleeping hours among those exposed to COVID-19 infection (OR = 0.85; 95% CI = 0.77–0.94; P < 0.01). Conclusions: The COVID-19 pandemic was associated with an increase in food consumption and sedentary life. Being exposed to COVID-19 by direct infection or through an infected household is a significant predictor of amplifying these changes. Public health interventions are needed to address healthy lifestyle behaviors during and after the COVID-19 pandemic
    corecore