2 research outputs found
The Enzymatic and Non-Enzymatic Antioxidant System Response of the Seagrass <i>Cymodocea nodosa</i> to Bisphenol-A Toxicity
The effects of environmentally relevant bisphenol A (BPA) concentrations (0.3, 1 and 3 μg L−1) were tested at 2, 4, 6 and 8 days, on intermediate leaves, of the seagrass Cymodocea nodosa. Hydrogen peroxide (H2O2) production, lipid peroxidation, protein, phenolic content and antioxidant enzyme activities were investigated. Increased H2O2 formation was detected even at the lowest BPA treatments from the beginning of the experiment and both the enzymatic and non-enzymatic antioxidant defense mechanisms were activated upon application of BPA. Elevated H2O2 levels that were detected as a response to increasing BPA concentrations and incubation time, led to the decrease of protein content on the 4th day even at the two lower BPA concentrations, and to the increase of the lipid peroxidation at the highest concentration. However, on the 6th day of BPA exposure, protein content did not differ from the control, indicating the ability of both the enzymatic and non-enzymatic mechanisms (such as superoxide dismutase (SOD) and phenolics) to counteract the BPA-derived oxidative stress. The early response of the protein content determined that the Low Effect Concentration (LOEC) of BPA is 0.3 μg L−1 and that the protein content meets the requirements to be considered as a possible early warning “biomarker” for C. nodosa against BPA toxicity
Antioxidant Activity, Inhibition of Intestinal Cancer Cell Growth and Polyphenolic Compounds of the Seagrass <i>Posidonia oceanica</i>’s Extracts from Living Plants and Beach Casts
The aim of the present study was to investigate the use of Posidonia oceanica for making products beneficial for human health. Firstly, we demonstrated that the antioxidant defense (i.e., SOD and APX activity) of P. oceanica’s living leaves (LP) has low efficacy, as they partly neutralize the produced H2O2. However, high H2O2 levels led LP to produce, as a response to oxidative stress, high phenolic content, including chicoric acid, p-coumaric acid, caftaric acid, trans-cinnamic and rutin hydrate, as shown by UHPLC-DAD analysis. In addition, LP extracts inhibited intestinal cancer cell proliferation. Moreover, P. oceanica’s beach casts consisting of either Wet ‘Necromass’ (WNP) or Dry ‘Necromass’ (DNP) were used for preparing extracts. Both DNP and WNP exhibited antioxidant and antiproliferative activities, although lower as compared to those of LP extracts. Although both P. oceanica’s meadows and beach casts are considered priority habitats in the Mediterranean Sea due to their high ecological value, legislation framework for beach casts forbidding their removal is still missing. Our results suggested that both LP and DNP could be utilized for the production of high-added value products promoting human health, provided that a sustainability management strategy would be applied for P. oceanica’s meadows and beach casts