23 research outputs found

    Association of methionine synthase reductase (MTRR A66G) polymorphism with susceptibility to acute lymphoblastic leukemia

    Get PDF
    Background and Objectives. The enzyme methionine synthase reductase is involved in cellular methylation reactions, DNA synthesis, and epigenetic processes. It is encoded by the MTRR gene, which garnered a lot of attention in current medical genetics research. This study was conducted to study the association between MTRR (A66G) polymorphism and the risk of developing acute lymphoblastic leukemia among Sudanese patients. Materials and Methods. This is a case-control study in which 150 patients with acute lymphoblastic leukemia (ALL) and 150 healthy participants as a control group were enrolled. DNA was extracted and analyzed for the MTRR (A66G) polymorphism using the real-time polymerase chain reaction. Results. Based on flow cytometry results, B-ALL was more common (79%) than T-ALL (21%). The comparison of hematological parameters in acute lymphoblastic leukemia subtypes showed a statistically significant high mean total white blood count (P=0.000) and mean blast percentage (P=0.050) in patients with T-ALL. The molecular analysis showed that the incidence of the MTRR homozygous genotypes AA and GG were higher in the patients (44% and 9.3%, respectively) compared to the control group (40% and 6.7%, respectively). In comparison, the heterozygous genotype AG was lower in the patients (46.7%) than in the control group (53.3%). However, the association between the polymorphism and acute lymphoblastic leukemia risk was not statistically significant (OR: 1.179, 95% CI 0.7459-1.865, P=0.445). Conclusions. This study concluded that MTRR A66G polymorphism was not associated with the risk of acute lymphoblastic leukemia among the Sudanese population

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Investigation of Isocitrate Dehydrogenase 1 and 2 Mutations in Acute Leukemia Patients in Saudi Arabia

    No full text
    Different forms of human cancer show mutations for isocitrate dehydrogenases 1 and 2 (IDH1/2). Mutation of these genes can cause aberrant methylation of the genome CpG islands (CGIs), which leads to an increase of suppressed oncogenes transcription or repression of active tumor suppressor gene transcription. This study aimed to identify the prevalence of IDH1/2 mutations in acute leukemia patients. The study cohort included 43 AML patients and 30 childhood ALL patients, from whom DNA bone marrow samples were taken. The alteration hotspots in codons IDH1 (R132) and IDH2 (R172 and R140) were examined via direct sequencing. Mutations in IDH1 were detected in 7 out of 43 (16.2%) AML patients; 5 of them occurred at codon R132. The other two mutations included a single-nucleotide polymorphism, which affected codon G105 in one patient. However, no mutation was detected in the IDH2 in any of the patients. Moreover, no mutations were detected in either IDH1 or IDH2 in ALL patients. The dominance of IDH1 mutations in AML, which was 16%, emphasizes the existence of the mutation in our population. On the other hand, IDH2 mutation was observed to be less frequent in both illnesses. Due to the limitation of using a small sample size, larger cohort screening is recommended to determine their usefulness as prognostic indicators

    MiR-595, RPL27A And Ribosomal Dysgenesis

    Get PDF

    Prototype Development of an Expert System of Computerized Clinical Guidelines for COVID-19 Diagnosis and Management in Saudi Arabia

    No full text
    The increasing number of COVID-19 patients has increased health care professionals’ workloads, making the management of dynamic patient information in a timely and comprehensive manner difficult and sometimes impossible. Compounding this problem is a lack of health care professionals and trained medical staff to handle the increased number of patients. Although Saudi Arabia has recently improved the quality of its health services, there is still no suitable intelligent system that can help health practitioners follow the clinical guidelines and automated risk assessment and treatment plan remotely, which would allow for the effective follow-up of patients of COVID-19. The proposed system includes five sub-systems: an information management system, a knowledge-based expert system, adaptive learning, a notification and follow-up system, and a mobile tracker system. This study shows that, to control epidemics, there is a method to overcome the shortage of specialists in the management of infections in Saudi Arabia, both today and in the future. The availability of computerized clinical guidance and an up-to-date knowledge base play a role in Saudi health organizations, which may not have to constantly train their physician staff and may no longer have to rely on international experts, since the expert system can offer clinicians all the information necessary to treat their patients

    Anticancer Potential of Green Synthesized Silver Nanoparticles of the Soft Coral <i>Cladiella pachyclados</i> Supported by Network Pharmacology and In Silico Analyses

    No full text
    Cladiella-derived natural products have shown promising anticancer properties against many human cancer cell lines. In the present investigation, we found that an ethyl acetate extract of Cladiella pachyclados (CE) collected from the Red Sea could inhibit the human breast cancer (BC) cells (MCF and MDA-MB-231) in vitro (IC50 24.32 ± 1.1 and 9.55 ± 0.19 µg/mL, respectively). The subsequent incorporation of the Cladiella extract into the green synthesis of silver nanoparticles (AgNPs) resulted in significantly more activity against both cancer cell lines (IC50 5.62 ± 0.89 and 1.72 ± 0.36, respectively); the efficacy was comparable to that of doxorubicin with much-enhanced selectivity. To explore the mode of action of this extract, various in silico and network-pharmacology-based analyses were performed in the light of the LC-HRESIMS-identified compounds in the CE extract. Firstly, using two independent machine-learning-based prediction software platforms, most of the identified compounds in CE were predicted to inhibit both MCF7 and MDA-MB-231. Moreover, they were predicted to have low toxicity towards normal cell lines. Secondly, approximately 242 BC-related molecular targets were collected from various databases and used to construct a protein–protein interaction (PPI) network, which revealed the most important molecular targets and signaling pathways in the pathogenesis of BC. All the identified compounds in the extract were then subjected to inverse docking against all proteins hosted in the Protein Data bank (PDB) to discover the BC-related proteins that these compounds can target. Approximately, 10.74% of the collected BC-related proteins were potential targets for 70% of the compounds identified in CE. Further validation of the docking results using molecular dynamic simulations (MDS) and binding free energy calculations revealed that only 2.47% of the collected BC-related proteins could be targeted by 30% of the CE-derived compounds. According to docking and MDS experiments, protein-pathway and compound-protein interaction networks were constructed to determine the signaling pathways that the CE compounds could influence. This paper highlights the potential of marine natural products as effective anticancer agents and reports the discovery of novel anti-breast cancer AgNPs

    Nebulization of Low-Dose S-Nitrosoglutathione in Diabetic Stroke Enhances Benefits of Reperfusion and Prevents Post-Thrombolysis Hemorrhage

    Get PDF
    The COVID-19 pandemic has escalated the occurrence of hypoxia including thrombotic stroke worldwide, for which nitric oxide (NO) therapy seems very promising and translatable. Therefore, various modes/routes of NO-delivery are now being tested in different clinical trials for safer, faster, and more effective interventions against ischemic insults. Intravenous (IV) infusion of S-Nitrosoglutathione (GSNO), the major endogenous molecular pool of NO, has been reported to protect against mechanical cerebral ischemia-reperfusion (IR); however, it has been never tested in any kind of “clinically” relevant thromboembolic stroke models with or without comorbidities and in combination with the thrombolytic reperfusion therapy. Moreover, “IV-effects” of higher dose of GSNO following IR-injury have been contradicted to augment stroke injury. Herein, we tested the hypothesis that nebulization of low-dose GSNO will not alter blood pressure (BP) and will mitigate stroke injury in diabetic mice via enhanced cerebral blood flow (CBF) and brain tissue oxygenation (PbtO2). GSNO-nebulization (200 μg/kgbwt) did not alter BP, but augmented the restoration of CBF, improved behavioral outcomes and reduced stroke injury. Moreover, GSNO-nebulization increased early reoxygenation of brain tissue/PbtO2 as measured at 6.5 h post-stroke following thrombolytic reperfusion, and enervated unwanted effects of late thrombolysis in diabetic stroke. We conclude that the GSNO-nebulization is safe and effective for enhancing collateral microvascular perfusion in the early hours following stroke. Hence, nebulized-GSNO therapy has the potential to be developed and translated into an affordable field therapy against ischemic events including strokes, particularly in developing countries with limited healthcare infrastructure

    RPL27A is a target of miR-595 and may contribute to the myelodysplastic phenotype through ribosomal dysgenesis

    Get PDF
    We investigated the functional consequences following deletion of a microRNA (miR) termed miR-595 which resides on chromosome 7q and is localised within one of the commonly deleted regions identified for Myelodysplasia (MDS) with monosomy 7 (−7)/isolated loss of 7q (7q-). We identified several targets for miR-595, including a large ribosomal subunit protein RPL27A. RPL27A downregulation induced p53 activation, apoptosis and inhibited proliferation. Moreover, p53-independent effects were additionally identified secondary to a reduction in the ribosome subunit 60s. We confirmed that RPL27A plays a pivotal role in the maintenance of nucleolar integrity and ribosomal synthesis/maturation. Of note, RPL27A overexpression, despite showing no significant effects on p53 mRNA levels, did in fact enhance cellular proliferation. In normal CD34+ cells, RPL27A knockdown preferentially blocked erythroid proliferation and differentiation. Lastly, we show that miR-595 expression appears significantly downregulated in the majority of primary samples derived from MDS patients with (−7)/(7q-), in association with RPL27A upregulation. This significant downregulation of miR-595 is also apparent when higher risk MDS cases are compared to lower risk cases. The potential clinical importance of these findings requires further validation

    Anticancer Potential of Green Synthesized Silver Nanoparticles of the Soft Coral Cladiella pachyclados Supported by Network Pharmacology and In Silico Analyses

    No full text
    Cladiella-derived natural products have shown promising anticancer properties against many human cancer cell lines. In the present investigation, we found that an ethyl acetate extract of Cladiella pachyclados (CE) collected from the Red Sea could inhibit the human breast cancer (BC) cells (MCF and MDA-MB-231) in vitro (IC50 24.32 ± 1.1 and 9.55 ± 0.19 µg/mL, respectively). The subsequent incorporation of the Cladiella extract into the green synthesis of silver nanoparticles (AgNPs) resulted in significantly more activity against both cancer cell lines (IC50 5.62 ± 0.89 and 1.72 ± 0.36, respectively); the efficacy was comparable to that of doxorubicin with much-enhanced selectivity. To explore the mode of action of this extract, various in silico and network-pharmacology-based analyses were performed in the light of the LC-HRESIMS-identified compounds in the CE extract. Firstly, using two independent machine-learning-based prediction software platforms, most of the identified compounds in CE were predicted to inhibit both MCF7 and MDA-MB-231. Moreover, they were predicted to have low toxicity towards normal cell lines. Secondly, approximately 242 BC-related molecular targets were collected from various databases and used to construct a protein–protein interaction (PPI) network, which revealed the most important molecular targets and signaling pathways in the pathogenesis of BC. All the identified compounds in the extract were then subjected to inverse docking against all proteins hosted in the Protein Data bank (PDB) to discover the BC-related proteins that these compounds can target. Approximately, 10.74% of the collected BC-related proteins were potential targets for 70% of the compounds identified in CE. Further validation of the docking results using molecular dynamic simulations (MDS) and binding free energy calculations revealed that only 2.47% of the collected BC-related proteins could be targeted by 30% of the CE-derived compounds. According to docking and MDS experiments, protein-pathway and compound-protein interaction networks were constructed to determine the signaling pathways that the CE compounds could influence. This paper highlights the potential of marine natural products as effective anticancer agents and reports the discovery of novel anti-breast cancer AgNPs

    Blood First Edition paper

    No full text
    Key Points • There is 100% concordance in the cytogenetic and mutation profile between PB and BM in myelodysplastic syndrome. Recent studies have shown that more than 80% of bone marrow (BM) samples from patients with myelodysplastic syndrome (MDS) harbor somatic mutations and/or genomic aberrations, which are of diagnostic and prognostic importance. We investigated the potential use of peripheral blood (PB) and serum to identify and monitor BM-derived genetic markers using high-resolution single nucleotide polymorphism array (SNP-A) karyotyping and parallel sequencing of 22 genes frequently mutated in MDS. This pilot study showed a 100% SNP-A karyotype concordance and a 97% mutation concordance between the BM and PB. In contrast, mutation analysis using Sanger sequencing of PB and serum-derived DNA showed only 65% and 42% concordance to BM, respectively. Our results show the potential utility of PB as a surrogate for BM for MDS patients, thus avoiding the need for repeated BM aspirates particularly in elderly patients and those with fibrotic or hypocellular marrows. (Blood. 2013;122(4):567-570) Introduction The myelodysplastic syndromes (MDSs) are clonal disorders of hematopoiesis that occur predominantly in the elderly (median age 72 years) and are characterized by morphologic dysplasia, ineffective hematopoiesis, peripheral blood (PB) cytopenias, chromosomal aberrations, and propensity to myeloid leukemic transformation. The advent of high-throughput and high-resolution techniques for genetic analysis has shown that more than 80% of MDS patients harbor somatic mutations and/or genomic aberrations in their bone marrow (BM), which provide pathogenetic as well as diagnostic and prognostic insights into this disease. 1-4 Frequent BM aspirates may be required for morphological Study design Genomic DNA from PB and BM was extracted (Qiagen) from frozen cell pellets and 100 ng was whole genome amplified (WGA; Qiagen), both per manufacturer&apos;s protocols. Serum DNA was purified from 200 mL of serum using a modified sodium iodide/Triton-based lysis followed by isopropanol precipitation as described. 12 Affymetrix SNP 6.0 array (SNP-A) karyotyping and 454-PS of all exons of DNMT3a, RUNX1, CEBPa, TP53, EZH2, and ZRSR2 and mutation &quot;hot spots&quot; for NPM1, FLT3, ASXL1, IDH1, IDH2, MPL, JAK2, BRAF, cCBL, NRAS, KRAS, C-KIT, SF3B1, SRSF2, and U2AF35 were performed and analyzed as previously described. 13,14 TET2 was analyzed using Sanger sequencing. Independent validation for all mutations was performed using Sanger sequencing of unamplified genomic DNA. Polymerase chain reaction (PCR) conditions for serum were identical to those for PB; however, a second 10-cycle PCR reaction using nested primers (US1-GTAGTGCGATGGCCAGT, US2-CAGTGTGCAGCGATGAC) was required to provide adequate amplicon yield for Sanger sequencing. The study was approved by the local research ethics committee under project 0033 and conducted in accordance with the Declaration of Helsinki. Results and discussion Karyotype analysis Karyotype aberrations were assessed using SNP-A on PB samples from 31 MDS patients, from whom metaphase cytogenetics (MC) and BM SNP-A karyotypes were available. These consisted of th
    corecore