11 research outputs found

    A Progressive Approach For Similarity Search On Matrix

    No full text
    We study a similarity search problem on a raw image by its pixel values. We call this problem as matrix similarity search; it has several applications, e.g., object detection, motion estimation, and superresolution. Given a data image D and a query q, the best match refers to a sub-window of D that is the most similar to q. The state-of-theart solution applies a sequence of lower bound functions to filter subwindows and reduce the response time. Unfortunately, it suffers from two drawbacks: (i) its lower bound functions cannot support arbitrary query size, and (ii) it may invoke a large number of lower bound functions, which may incur high cost in the worst-case. In this paper, we propose an efficient solution that overcomes the above drawbacks. First, we present a generic approach to build lower bound functions that are applicable to arbitrary query size and enable trade-offs between bound tightness and computation time. We provide performance guarantee even in the worst-case. Second, to further reduce the number of calls to lower bound functions, we develop a lower bound function for a group of sub-windows. Experimental results on image data demonstrate the efficiency of our proposed methods

    Texture Classification Using Sparse Frame-Based Representations

    Get PDF
    <p/> <p>A new method for supervised texture classification, denoted by frame texture classification method (FTCM), is proposed. The method is based on a deterministic texture model in which a small image block, taken from a texture region, is modeled as a sparse linear combination of frame elements. FTCM has two phases. In the design phase a frame is trained for each texture class based on given texture example images. The design method is an iterative procedure in which the representation error, given a sparseness constraint, is minimized. In the classification phase each pixel in a test image is labeled by analyzing its spatial neighborhood. This block is represented by each of the frames designed for the texture classes under consideration, and the frame giving the best representation gives the class. The FTCM is applied to nine test images of natural textures commonly used in other texture classification work, yielding excellent overall performance.</p
    corecore