450 research outputs found
Probing the magnetic moment of FePt micromagnets prepared by Focused Ion Beam milling
We investigate the degradation of the magnetic moment of a 300 nm thick FePt
film induced by Focused Ion Beam (FIB) milling. A rod is milled out of a film by a FIB process and is attached
to a cantilever by electron beam induced deposition. Its magnetic moment is
determined by frequency-shift cantilever magnetometry. We find that the
magnetic moment of the rod is , which implies that 70% of the magnetic moment is preserved
during the FIB milling process. This result has important implications for atom
trapping and magnetic resonance force microscopy (MRFM), that are addressed in
this paper.Comment: 4 pages, 4 figure
The impact of hunting on tropical mammal and bird populations
Hunting is a major driver of biodiversity loss, but a systematic large-scale estimate of hunting-induced defaunation is lacking. We synthesized 176 studies to quantify hunting-induced declines of mammal and bird populations across the tropics. Bird and mammal abundances declined by 58% (25 to 76%) and by 83% (72 to 90%) in hunted compared with unhunted areas. Bird and mammal populations were depleted within 7 and 40 kilometers from hunters’ access points (roads and settlements). Additionally, hunting pressure was higher in areas with better accessibility to major towns where wild meat could be traded. Mammal population densities were lower outside protected areas, particularly because of commercial hunting. Strategies to sustainably manage wild meat hunting in both protected and unprotected tropical ecosystems are urgently needed to avoid further defaunation
Erbium in crystal silicon: Optical activation, excitation, and concentration limits
7 pags.; 7 figs.The optical activation, excitation, and concentration limits of erbium in crystal Si are studied. Preamorphized surface layers of Czochralski-grown (Cz) Si(100), containing 1.7×1018 O/cm3, were implanted with 250 keV Er at fluences in the range 8×1011-8×10 14 cm-2. After thermal solid-phase epitaxy of the Er-doped amorphous layers at 600°C, Er is trapped in the crystal at concentrations ranging from 3×1016 to 7×1019 Er/cm 3, as measured by secondary-ion-mass spectrometry. Photoluminescence spectra taken at 77 K show the characteristic Er3+ intra-4f luminescence at 1.54 ¿m. Photoluminescence excitation spectroscopy shows that Er is excited through a photocarrier-mediated process. Rapid thermal annealing at 1000°C for 15 s increases the luminescence intensity, mainly due to an increase in minority-carrier lifetime, which enhances the excitation efficiency. Luminescent Er forms clusters with oxygen: the maximum Er concentration that can be optically activated is determined by the O content, and is (3±1)×1017 Er/cm3 in Cz-Si. The internal quantum efficiency for electrical excitation of Er in Cz-Si is larger than 3×10-6. © 1995 American Institute of Physics.This work is part of the research program of the Foundation
for Fundamental Research on Matter (FOM) and was
made possible by financial support from the Dutch Organization
for the Advancement of Pure Research @IWO), the
Netherlands Technology Foundation (STW), and the IC
Technology Program (IOP Electra-Optics) of the Ministry of
Economic Affairs. R.S. acknowIedges financial support from
CSIC, Spain.Peer Reviewe
Mapping spectroscopic uncertainties into prospective methane retrieval errors from Sentine-5 and its precursor
Sentinel-5 (S5) and its precursor (S5P) are future European satellite missions aiming at global monitoring of methane (CH4) column average dry air mole fractions (XCH4). The spectrometers to be deployed on-board the satellites record spectra of sunlight backscattered from the Earth\u27s surface and atmosphere. In particular, they exploit CH4 absorption in the shortwave infrared spectral range around 1.65 µm (S5 only) and 2.35 µm (both, S5 and S5P) wavelength. Given an accuracy goal of better than 2% for XCH4 to be delivered on regional scales, assessment and reduction of potential sources of systematic error such as spectroscopic uncertainties is crucial. Here, we investigate how spectroscopic errors propagate into retrieval errors on the global scale. To this end, absorption spectra of a ground-based Fourier Transform Spectrometer (FTS) operating at very high spectral resolution serve as estimate for the quality of the spectroscopic parameters. Feeding the FTS fitting residuals as a perturbation into a global ensemble of simulated S5 and S5P-like spectra at relatively low spectral resolution, XCH4 retrieval errors exceed 1% in large parts of the world and show systematic correlations on regional scales, calling for improved spectroscopic parameters
Global assessment of nitrogen deposition effects on terrestrial plant diversity : a synthesis
Atmospheric nitrogen (N) deposition is it recognized threat to plant diversity ill temperate and northern parts of Europe and North America. This paper assesses evidence from field experiments for N deposition effects and thresholds for terrestrial plant diversity protection across a latitudinal range of main categories of ecosystems. from arctic and boreal systems to tropical forests. Current thinking on the mechanisms of N deposition effects on plant diversity, the global distribution of G200 ecoregions, and current and future (2030) estimates of atmospheric N-deposition rates are then used to identify the risks to plant diversity in all major ecosystem types now and in the future. This synthesis paper clearly shows that N accumulation is the main driver of changes to species composition across the whole range of different ecosystem types by driving the competitive interactions that lead to composition change and/or making conditions unfavorable for some species. Other effects such its direct toxicity of nitrogen gases and aerosols long-term negative effects of increased ammonium and ammonia availability, soil-mediated effects of acidification, and secondary stress and disturbance are more ecosystem, and site-specific and often play a supporting role. N deposition effects in mediterranean ecosystems have now been identified, leading to a first estimate of an effect threshold. Importantly, ecosystems thought of as not N limited, such as tropical and subtropical systems, may be more vulnerable in the regeneration phase. in situations where heterogeneity in N availability is reduced by atmospheric N deposition, on sandy soils, or in montane areas. Critical loads are effect thresholds for N deposition. and the critical load concept has helped European governments make progress toward reducing N loads on sensitive ecosystems. More needs to be done in Europe and North America. especially for the more sensitive ecosystem types. including several ecosystems of high conservation importance. The results of this assessment Show that the Vulnerable regions outside Europe and North America which have not received enough attention are ecoregions in eastern and Southern Asia (China, India), an important part of the mediterranean ecoregion (California, southern Europe). and in the coming decades several subtropical and tropical parts of Latin America and Africa. Reductions in plant diversity by increased atmospheric N deposition may be more widespread than first thought, and more targeted Studies are required in low background areas, especially in the G200 ecoregions
Polarization tomography of metallic nanohole arrays
We report polarization tomography experiments on metallic nanohole arrays
with square and hexagonal symmetry. As a main result, we find that a fully
polarized input beam is partly depolarized after transmission through a
nanohole array. This loss of polarization coherence is found to be anisotropic,
i.e. it depends on the polarization state of the input beam. The depolarization
is ascribed to a combination of two factors: i) the nonlocal response of the
array due to surface plasmon propagation, ii) the non-plane wave nature of a
practical input beam.Comment: 4 pages, 3 figures, 1 table, submitted to PR
- …