64 research outputs found

    Polydopamine-mediated immobilization of alginate lyase to prevent P. aeruginosa adhesion

    Get PDF
    Given alginate’s contribution to Pseudomonas aeruginosa virulence, it has long been considered a promising target for interventional therapies, which have been performed by using the enzyme alginate lyase. In this work, instead of treating pre-established mucoid biofi lms, alginate lyase is immobilized onto a surface as a preventive measure against P. aeruginosa adhesion. A polydopamine dip-coating strategy is employed for functionalization of polycarbonate surfaces. Enzyme immobilization is confi rmed by surface characterization. Surfaces functionalized with alginate lyase exhibit anti-adhesive properties, inhibiting the attachment of the mucoid strain. Moreover, surfaces modifi ed with this enzyme also inhibit the adhesion of the tested non-mucoid strain. Unexpectedly, treatment with heat-inactivated enzyme also inhibits the attachment of mucoid and non-mucoid P. aeruginosa strains. These fi ndings suggest that the antibacterial performance of alginate lyase functional coatings is catalysis-independent, highlighting the importance of further studies to better understand its mechanism of action against P. aeruginosa strains.T he authors acknowledge the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). This study was also supported by FCT and the European Community fund FEDER, through Program COMPETE, under the scope of the Projects “PTDC/SAU-SAP/113196/2009” (FCOMP-01-0124-FEDER-016012) and “RECI/BBB-EBI/0179/2012” (FCOMP-01-0124-FEDER-027462). The authors also acknowledge Dr. Margarida Martins from 3B’s Research Group – Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine (AvePark, 4806-909 Taipas/Guimarãe s, Portugal) for kindly providing the isolated strains which were obtained under the scope of the project “Insights into peritoneal dialysis catheter associated biofi lms” funded by the Portuguese Society of Nephrology to Dr. Anabela Rodrigues. The authors also acknowledge the Ph.D. Grant of Diana Alves (SFRH/BD/78063/2011). T.S.S. was funded by a National Science Foundation graduate fellowship (Grant No. GRFP 2011124091), the Ryan Fellowship of Northwestern University, and NIH grant R37 DE014193 to P.B.M

    Genetically Engineered Alginate Lyase-PEG Conjugates Exhibit Enhanced Catalytic Function and Reduced Immunoreactivity

    Get PDF
    Alginate lyase enzymes represent prospective biotherapeutic agents for treating bacterial infections, particularly in the cystic fibrosis airway. To effectively deimmunize one therapeutic candidate while maintaining high level catalytic proficiency, a combined genetic engineering-PEGylation strategy was implemented. Rationally designed, site-specific PEGylation variants were constructed by orthogonal maleimide-thiol coupling chemistry. In contrast to random PEGylation of the enzyme by NHS-ester mediated chemistry, controlled mono-PEGylation of A1-III alginate lyase produced a conjugate that maintained wild type levels of activity towards a model substrate. Significantly, the PEGylated variant exhibited enhanced solution phase kinetics with bacterial alginate, the ultimate therapeutic target. The immunoreactivity of the PEGylated enzyme was compared to a wild type control using in vitro binding studies with both enzyme-specific antibodies, from immunized New Zealand white rabbits, and a single chain antibody library, derived from a human volunteer. In both cases, the PEGylated enzyme was found to be substantially less immunoreactive. Underscoring the enzyme's potential for practical utility, >90% of adherent, mucoid, Pseudomonas aeruginosa biofilms were removed from abiotic surfaces following a one hour treatment with the PEGylated variant, whereas the wild type enzyme removed only 75% of biofilms in parallel studies. In aggregate, these results demonstrate that site-specific mono-PEGylation of genetically engineered A1-III alginate lyase yielded an enzyme with enhanced performance relative to therapeutically relevant metrics.Cystic Fibrosis Foundation (Research Development Program)National Center for Research Resources (U.S.) (P20RR018787-06

    Research and Application of Marine Microbial Enzymes: Status and Prospects

    Get PDF
    Over billions of years, the ocean has been regarded as the origin of life on Earth. The ocean includes the largest range of habitats, hosting the most life-forms. Competition amongst microorganisms for space and nutrients in the marine environment is a powerful selective force, which has led to evolution. The evolution prompted the marine microorganisms to generate multifarious enzyme systems to adapt to the complicated marine environments. Therefore, marine microbial enzymes can offer novel biocatalysts with extraordinary properties. This review deals with the research and development work investigating the occurrence and bioprocessing of marine microbial enzymes

    Antibiofilm Activity of an Exopolysaccharide from Marine Bacterium Vibrio sp. QY101

    Get PDF
    Bacterial exopolysaccharides have always been suggested to play crucial roles in the bacterial initial adhesion and the development of complex architecture in the later stages of bacterial biofilm formation. However, Escherichia coli group II capsular polysaccharide was characterized to exert broad-spectrum biofilm inhibition activity. In this study, we firstly reported that a bacterial exopolysaccharide (A101) not only inhibits biofilm formation of many bacteria but also disrupts established biofilm of some strains. A101 with an average molecular weight of up to 546 KDa, was isolated and purified from the culture supernatant of the marine bacterium Vibrio sp. QY101 by ethanol precipitation, iron-exchange chromatography and gel filtration chromatography. High performance liquid chromatography traces of the hydrolyzed polysaccharides showed that A101 is primarily consisted of galacturonic acid, glucuronic acid, rhamnose and glucosamine. A101 was demonstrated to inhibit biofilm formation by a wide range of Gram-negative and Gram-positive bacteria without antibacterial activity. Furthermore, A101 displayed a significant disruption on the established biofilm produced by Pseudomonas aeruginosa, but not by Staphylococcus aureus. Importantly, A101 increased the aminoglycosides antibiotics' capability of killing P. aeruginosa biofilm. Cell primary attachment to surfaces and intercellular aggregates assays suggested that A101 inhibited cell aggregates of both P. aeruginosa and S. aureus, while the cell-surface interactions inhibition only occurred in S. aureus, and the pre-formed cell aggregates dispersion induced by A101 only occurred in P. aeruginosa. Taken together, these data identify the antibiofilm activity of A101, which may make it potential in the design of new therapeutic strategies for bacterial biofilm-associated infections and limiting biofilm formation on medical indwelling devices. The found of A101 antibiofilm activity may also promote a new recognition about the functions of bacterial exopolysaccharides

    Antimicrobial proteins and polypeptides in pulmonary innate defence

    Get PDF
    Inspired air contains a myriad of potential pathogens, pollutants and inflammatory stimuli. In the normal lung, these pathogens are rarely problematic. This is because the epithelial lining fluid in the lung is rich in many innate immunity proteins and peptides that provide a powerful anti-microbial screen. These defensive proteins have anti-bacterial, anti- viral and in some cases, even anti-fungal properties. Their antimicrobial effects are as diverse as inhibition of biofilm formation and prevention of viral replication. The innate immunity proteins and peptides also play key immunomodulatory roles. They are involved in many key processes such as opsonisation facilitating phagocytosis of bacteria and viruses by macrophages and monocytes. They act as important mediators in inflammatory pathways and are capable of binding bacterial endotoxins and CPG motifs. They can also influence expression of adhesion molecules as well as acting as powerful anti-oxidants and anti-proteases. Exciting new antimicrobial and immunomodulatory functions are being elucidated for existing proteins that were previously thought to be of lesser importance. The potential therapeutic applications of these proteins and peptides in combating infection and preventing inflammation are the subject of ongoing research that holds much promise for the future

    Bacteriophage-encoded depolymerases: their diversity and biotechnological applications

    Get PDF
    Bacteriophages (phages), natural enemies of bacteria, can encode enzymes able to degrade polymeric substances. These substances can be found in the bacterial cell surface, such as polysaccharides, or are produced by bacteria when they are living in biofilm communities, the most common bacterial lifestyle. Consequently, phages with depolymerase activity have a facilitated access to the host receptors, by degrading the capsular polysaccharides, and are believed to have a better performance against bacterial biofilms, since the degradation of extracellular polymeric substances by depolymerases might facilitate the access of phages to the cells within different biofilm layers. Since the diversity of phage depolymerases is not yet fully explored, this is the first review gathering information about all the depolymerases encoded by fully sequenced phages. Overall, in this study, 160 putative depolymerases, including sialidases, levanases, xylosidases, dextranases, hyaluronidases, peptidases as well as pectate/pectin lyases, were found in 143 phages (43 Myoviridae, 47 Siphoviridae, 37 Podoviridae, and 16 unclassified) infecting 24 genera of bacteria. We further provide information about the main applications of phage depolymerases, which can comprise areas as diverse as medical, chemical, or food-processing industry.DPP acknowledges the financial support from the Portuguese Foundation for Science and Technology (FCT) through the grant SFRH/BD/76440/2011. SS is an FCT investigator (IF/01413/2013). The authors also thank FCT for the Strategic Project of the UID/BIO/04469/2013 unit, FCT and European Union funds (FEDER/COMPETE) for the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER027462)

    Pharmacokinetics/Pharmacodynamics of Colistin and Imipenem on Mucoid and Nonmucoid Pseudomonas aeruginosa Biofilms▿†

    Full text link
    The time course of activity of colistin and imipenem against mucoid and nonmucoid Pseudomonas aeruginosa growing in a biofilm showed that compared with those for planktonic bacteria, the kinetics of colistin and imipenem retained the concentration- and time-dependent killing, respectively, but higher doses of antibiotics and longer dosing periods were required for biofilm eradication. Biofilms of mucoid P. aeruginosa were more difficult to eradicate than nonmucoid biofilms

    Alginate Lyase Exhibits Catalysis-Independent Biofilm Dispersion and Antibiotic Synergy

    Full text link
    More than 2 decades of study support the hypothesis that alginate lyases are promising therapeutic candidates for treating mucoid Pseudomonas aeruginosa infections. In particular, the enzymes' ability to degrade alginate, a key component of mucoid biofilm matrix, has been the presumed mechanism by which they disrupt biofilms and enhance antibiotic efficacy. The systematic studies reported here show that, in an in vitro model, alginate lyase dispersion of P. aeruginosa biofilms and enzyme synergy with tobramycin are completely decoupled from catalytic activity. In fact, equivalent antibiofilm effects can be achieved with bovine serum albumin or simple amino acids. These results provide new insights into potential mechanisms of alginate lyase therapeutic activity, and they should motivate a careful reexamination of the fundamental assumptions underlying interest in enzymatic biofilm dispersion
    • …
    corecore