29 research outputs found

    Composición química, estabilidad oxidativa y propiedades sensoriales de las mezclas de aceites de semillas de Boerhavia elegana Choisy (alhydwan)/aceite de maní

    Get PDF
    This study investigated the effects of blending alhydwan seed oil and peanut oil as a way of enhancing the stability and chemical characteristics of plant seed oils and to discover more innovative foods of high nutraceutical value which can be used in other food production systems. Alhydwan seed oil and peanut oil blended at proportions of 10:90, 20:80, 30:70, 40:60 and 50:50 (v/v) were evaluated according to their physi­cochemical properties, including refractive index, relative density, saponification value, peroxide value, iodine value, free fatty acids, oxidative stability index, and tocopherol contents using various standard and published methods. At room temperature, all of the oil blends were in the liquid state. The physicochemical profiles of the blended oils showed significant decreases (p < 0.05) in peroxide value (6.97–6.02 meq O2/kg oil), refractive index at 25 °C (1.462–1.446), free fatty acids (2.29–1.71%), and saponification value (186.44–183.77 mg KOH/g), and increases in iodine value and relative density at 25 °C (98.10–102.89 and 0.89–0.91, respectively), especially with an analhydwan seed oil to peanut oil ratio of 10:90. Among the fatty acids, oleic and linoleic acids were most abundant in the 50:50 and 10:90 alhydwan seed oil to peanut oil blends, respectively. Oxidative stability increased as the proportion of alhydwan oil increased. In terms of tocopherol contents (γ, δ, and α), γ-tocopherol had the highest values across all of the blended proportions, followed by δ-tocopherol. The overall acceptability was good for all blends. The incorporation of alhydwan seed oil into peanut oil resulted in inexpensive, high-quality blended oil that may be useful in health food products and pharmaceuticals without compromising sensory characteristics.Este estudio investigó los efectos de mezclar aceites de semillas de alhidwan y aceites de maní como una forma de mejorar la estabilidad y las características químicas de los aceites de semillas de plantas y descubrir alimentos más innovadores de alto valor nutracéutico que pueden usarse en otros sistemas de producción de alimentos. El aceite de semilla de Alhydwan y el aceite de maní se mezclaron en proporciones: 10:90, 20:80, 30:70, 40:60 y 50:50 (v/v), respectivamente, y se evaluaron sus propiedades fisicoquímicas, incluido el índice de refracción, densidad, índice de saponificación, índice de peróxido, índice de yodo, ácidos grasos libres, estabilidad oxidativa y contenido de tocoferoles, utilizando métodos estandarizados publicados. A temperatura ambiente, todas las mezclas de aceite estaban en estado líquido. Los perfiles fisicoquímicos de los aceites mezclados mostraron disminuciones significativas (p < 0.05) en el valor de peróxido (6,97–6,02 meqO2/kg de aceite), índice de refracción a 25 °C (1,462–1,446), ácidos grasos libres (2,29–1,71%) e índice de saponificación (186,44–183,77 mg KOH/g), y aumentos en el índice de yodo y la densi­dad relativa a 25 °C (98,10–102,89 y 0,89–0,91, respectivamente), especialmente en una relación de aceite de semilla de analhidwan a aceite de maní de 10:90. Entre los ácidos grasos, los ácidos oleico y linoleico fueron los más abundantes en las mezclas de aceite de semilla de alhydwan/aceite de maní 50:50 y 10:90, respectivamente. La estabilidad oxidativa aumentó a medida que aumentó la proporción de aceite de alhidwan. En términos de contenido de tocoferoles (γ, δ y α), el γ-tocoferol tuvo los valores más altos en todas las proporciones de las mezclas, seguido por el δ-tocoferol. La aceptabilidad general fue buena para todas las mezclas. La incorpora­ción del aceite de semilla de alhydwan al aceite de maní da como resultado mezclas económicas y de alta cali­dad que pueden ser útiles en productos alimenticios saludables y productos farmacéuticos sin comprometer las características sensoriales

    Alteration in antioxidant genes expression in some fish caught from Jeddah and Yanbu coast as a bio-indicator of oil hydrocarbons pollution

    Full text link
    The mRNA expression profile of some antioxidant genes in skin, gills, livers, and muscles of Siganus canaliculatus and Epinephelus morio was used as an indicator of petroleum hydrocarbons pollution in six areas at Jeddah and Yanbu coasts in KSA. Total petroleum hydrocarbons (TPHs) were determined in both sea water and sediments collected from the studied areas. The mRNA expression levels of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were determined. The highest level of total petroleum hydrocarbons was observed in front of the petromine refinery at Jeddah and in S. canaliculatus when compared to E. morio. There was a significant high expression level of studied antioxidant enzymes genes in the polluted areas and the level of the expression profile tended to correlate with the degree of pollution and fish species feed habit. This was confirmed by the level of MDA which in the same way increased with an increase in the level of total hydrocarbons. In conclusion; the expression profile of antioxidant enzymes of S. canaliculatus and E. morio tissues can be used as a strong bio-indicator of total hydrocarbons pollution especially in S. canaliculatus

    Pupillary mechanism in <i>Polyrhachis sokolova</i>.

    Full text link
    <p>(a) Light- and (b) dark- adaptation in the compound eye. Transverse sections through the crystalline cone tract (top left) and crystalline cone (top right); transverse sections through the rhabdom (bottom left and bottom right); longitudinal sections and illustration of a single ommatidium. Red circle indicates the retinula cell screening pigments close to the rhabdom in the light-adapted state, but farther from the rhabdom in the dark-adapted state. c – cornea; cc – crystalline cone; ct – crystalli ne cone tract; ppc – primary pigment cells; spc – secondary pigment cells; rh – rhabdom. Dashed line indicates the sectioning depth. Filled blue circles in longitudinal illustrations – retinula cell pigments.</p

    External morphology of the eye structure of <i>Polyrhachis sokolova</i>.

    Full text link
    <p>Scanning electron micrographs (SEM) illustrate (a) a frontal view of the head with dorsal rim area indicated by a red dashed box; (b) a lateral view of the right eye; (c) an eye map indicating the facet size and facet distribution. Orientation of the eye (for b,c) is indicated in the top right: a: anterior, p: posterior, v: ventral; d: dorsal.</p

    The intertidal ant <i>Polyrhachis sokolova</i> and its typical activity.

    Full text link
    <p>(a) A worker of <i>P. sokolova</i>. (b) Daily activity schedule of ants from three nests determined by counts of outgoing and returning foragers in 5-minute bins over a 24-hr period on a single day in the month of April. This illustrates that ants are active during both day and night.</p

    Histological analysis of the eye of <i>Polyrhachis sokolova</i>.

    Full text link
    <p>(a) Frontal section of the eye from the dorsal to ventral region. Electron micrographs of the rhabdoms in the (b) dorsal rim area (DRA) of the eye, and (c) in the medio-frontal region. Microvilli orientation in the rhabdoms is indicated by red lines.</p
    corecore