18 research outputs found
Highlights on the development, related patents, and prospects of Lenacapavir : the first-in-class HIV-1 capsid inhibitor for the treatment of multi-drug-resistant HIV-1 infection
The multidrug-resistant (MDR) human immunodeficiency virus 1 (HIV-1) infection is an
unmet medical need. HIV-1 capsid plays an important role at different stages of the HIV-1 replication
cycle and is an attractive drug target for developing therapies against MDR HIV-1 infection. Lenacapavir
(LEN) is the first-in-class HIV-1 capsid inhibitor approved by the USFDA, EMA, and Health
Canada for treating MDR HIV-1 infection. This article highlights the development, pharmaceutical
aspects, clinical studies, patent literature, and future directions on LEN-based therapies. The literature
for this review was collected from PubMed, authentic websites (USFDA, EMA, Health Canada,
Gilead, and NIH), and the free patent database (Espacenet, USPTO, and Patent scope). LEN has
been developed by Gilead and is marketed as Sunlenca (tablet and subcutaneous injection). The
long-acting and patient-compliant LEN demonstrated a low level of drug-related mutations, is active
against MDR HIV-1 infection, and does not reveal cross-resistance to other anti-HIV drugs. LEN
is also an excellent drug for patients having difficult or limited access to healthcare facilities. The
literature has established additive/synergistic effects of combining LEN with rilpivirine, cabotegravir,
islatravir, bictegravir, and tenofovir. HIV-1 infection may be accompanied by opportunistic infections
such as tuberculosis (TB). The associated diseases make HIV treatment complex and warrant drug
interaction studies (drug–drug, drug–food, and drug–disease interaction). Many inventions on
different aspects of LEN have been claimed in patent literature. However, there is a great scope for
developing more inventions related to the drug combination of LEN with anti-HIV/anti-TB drugs in
a single dosage form, new formulations, and methods of treating HIV and TB co-infection. Additional
research may provide more LEN-based treatments with favorable pharmacokinetic parameters for
MDR HIV-1 infections and associated opportunistic infections such as TB.https://www.mdpi.com/journal/medicinaam2024School of Health Systems and Public Health (SHSPH)SDG-03:Good heatlh and well-bein
Core Proteomics and Immunoinformatic Approaches to Design a Multiepitope Reverse Vaccine Candidate against Chagas Disease
Chagas disease is a tropical ailment indigenous to South America and caused by the protozoan parasite Trypanosoma cruzi, which has serious health consequences globally. Insect vectors transmit the parasite and, due to the lack of vaccine availability and limited treatment options, we implemented an integrated core proteomics analysis to design a reverse vaccine candidate based on immune epitopes for disease control. Firstly, T. cruzi core proteomics was used to identify immunodominant epitopes. Therefore, we designed the vaccine sequence to be non-allergic, antigenic, immunogenic, and to have better solubility. After predicting the tertiary structure, docking and molecular dynamics simulation (MDS) were performed with TLR4, MHC-I, and MHC-II receptors to discover the binding affinities. The final vaccine design demonstrated significant hydrogen bond interactions upon docking with TLR4, MHC-I, and MHC-II receptors. This indicated the efficacy of the vaccine candidate. A server-based immune simulation approach was generated to predict the efficacy. Significant structural compactness and binding stability were found based on MDS. Finally, by optimizing codons on Escherichia coli K12, a high GC content and CAI value were obtained, which were then incorporated into the cloning vector pET2+ (a). Thus, the developed vaccine sequence may be a viable therapy option for Chagas disease
Atorvastatin and Fluvastatin Potentiate Blood Pressure Lowering Effect of Amlodipine through Vasorelaxant Phenomenon
Background and Objectives: We have recently reported that stains have calcium channel blocking activity in isolated jejunal preparations. In this study, we examined the effects of atorvastatin and fluvastatin on blood vessels for a possible vasorelaxant effect. We also studied the possible additional vasorelaxant effect of atorvastatin and fluvastatin, in the presence of amlodipine, to quantify its effects on the systolic blood pressure of experimental animals. Materials and Methods: Atorvastatin and fluvastatin were tested in isolated rabbits’ aortic strip preparations using 80mM Potassium Chloride (KCl) induced contractions and 1 micro molar Norepinephrine (NE) induced contractions. A positive relaxing effect on 80 mM KCl induced contractions were further confirmed in the absence and presence of atorvastatin and fluvastatin by constructing calcium concentration response curves (CCRCs) while using verapamil as a standard calcium channel blocker. In another series of experiments, hypertension was induced in Wistar rats and different test concentrations of atorvastatin and fluvastatin were administered in their respective EC50 values to the test animals. A fall in their systolic blood pressure was noted using amlodipine as a standard vasorelaxant drug. Results: The results show that fluvastatin is more potent than amlodipine as it relaxed NE induced contractions where the amplitude reached 10% of its control in denuded aortae. Atorvastatin relaxed KCL induced contractions with an amplitude reaching 34.4% of control response as compared to the amlodipine response, i.e., 39.1%. A right shift in the EC50 (Log Ca++ M) of Calcium Concentration Response Curves (CCRCs) implies that statins have calcium channel blocking activity. A right shift in the EC50 of fluvastatin with relatively less EC50 value (−2.8 Log Ca++ M) in the presence of test concentration (1.2 × 10−7 M) of fluvastatin implies that fluvastatin is more potent than atorvastatin. The shift in EC50 resembles the shift of Verapamil, a standard calcium channel blocker (−1.41 Log Ca++ M). Conclusions: Atorvastatin and fluvastatin relax the aortic strip preparations predominantly through the inhibition of voltage gated calcium channels in high molar KCL induced contractions. These statins also inhibit the effects of NE induced contractions. The study also confirms that atorvastatin and fluvastatin potentiate blood pressure lowering effects in hypertensive rats
Molecular Mimicry Analyses Unveiled the Human Herpes Simplex and Poxvirus Epitopes as Possible Candidates to Incite Autoimmunity
Clinical epidemiological studies have reported that viral infections cause autoimmune pathology in humans. Host-pathogen protein sequences and structure-based molecular mimicry cause autoreactive T cells to cross-activate. The aim of the current study was to implement immunoinformatics approaches to infer sequence- and structure-based molecular mimicry between viral and human proteomic datasets. The protein sequences of all the so far known human-infecting viruses were obtained from the VIPR database, and complete human proteome data were retrieved from the NCBI repository. Based on a predefined, stringent threshold of comparative sequence analyses, 24 viral proteins were identified with significant sequence similarity to human proteins. PathDIP identified the enrichment of these homologous proteins in nine metabolic pathways with a p-value < 0.0001. Several viral and human mimic epitopes from these homologous proteins were predicted as strong binders of human HLA alleles, with IC50 < 50 nM. Downstream molecular docking analyses identified that lead virus-human homologous epitopes feasibly interact with HLA and TLR4 types of immune receptors. The vast majority of these top-hit homolog epitopic peptides belong to the herpes simplex and poxvirus families. These lead epitope biological sequences and 3D structural-based molecular mimicry may be promising for interpreting herpes simplex virus and poxvirus infection-mediated autoimmune disorders in humans
Phytochemical Profiling, Antioxidant, Antimicrobial and Cholinesterase Inhibitory Effects of Essential Oils Isolated from the Leaves of Artemisia scoparia and Artemisia absinthium
The current studies were focused on the phytochemical profiling of two local wild Artemisia species, Artemisia scoparia and Artemisia absinthium leaves’ essential oils, extracted via the hydro distillation method along with evaluation of their antioxidant as well as antimicrobial effects. The constituents of EOs were identified using a combined gas chromatography-mass spectrometric (GC-MS) technique. A total of 25 compounds in A. scoparia essential oil (EOAS) were identified, and 14 compounds with percentage abundance of >1% were tabulated, the major being tocopherol derivatives (47.55%). A total of nine compounds in Artemisia absinthium essential oil (EOAA) were enlisted (% age > 1%), the majority being oleic acid derivatives (41.45%). Strong antioxidant effects were pronounced by the EOAS in DPPH (IC50 = 285 ± 0.82 µg/mL) and in ABTS (IC50 = 295 ± 0.32 µg/mL) free radical scavenging assays. Both the EOs remained potent in inhibiting the growth of bacterial species; Escherichia coli (55–70%) and Shigella flexneri (60–75%) however remained moderately effective against Bacillus subtilis as well as Staphylococcus aureus. Both EOAS and EOAA strongly inhibited the growth of the tested fungal species, especially Aspergillus species (up to 70%). The oils showed anti-cholinesterase potential by inhibiting both Acetylcholinesterase (AChE; IC50 = 30 ± 0.04 µg/mL (EOAS), 32 ± 0.05 µg/mL (EOAA) and Butyrylcholinesterase (BChE; IC50 = 34 ± 0.07 µg/mL (EOAS), 36 ± 0.03 µg/mL (EOAA). In conclusion, the essential oils of A. scoparia and A. absinthium are promising antioxidant, antimicrobial and anticholinergic agents with a different phytochemical composition herein reported for the first time
g-C<sub>3</sub>N<sub>4</sub> Based Photocatalyst for the Efficient Photodegradation of Toxic Methyl Orange Dye: Recent Modifications and Future Perspectives
Industrial effluents containing dyes are the dominant pollutants, making the drinking water unfit. Among the dyes, methylene orange (MO) dye is mutagenic, carcinogenic and toxic to aquatic organisms. Therefore, its removal from water bodies through effective and economical approach is gaining increased attention in the last decades. Photocatalytic degradation has the ability to convert economically complex dye molecules into non-toxic and smaller species via redox reactions, by using photocatalysts. g-C3N4 is a metal-free n-type semiconductor, typical nonmetallic and non-toxici polymeric photocatalyst. It widely used in photocatalytic materials, due to its easy and simple synthesis, fascinating electronic band structure, high stability and abundant availability. As a photocatalyst, its major drawbacks are its limited efficiency in separating photo-excited electron–hole pairs, high separated charge recombination, low specific surface area, and low absorption coefficient. In this review, we report the recent modification strategies adopted for g-C3N4 for the efficient photodegradation of MO dye. The different modification approaches, such as nanocomposites and heterojunctions, as well as doping and defect introductions, are briefly discussed. The mechanism of the photodegradation of MO dye by g-C3N4 and future perspectives are discussed. This review paper will predict strategies for the fabrication of an efficient g-C3N4-based photocatalyst for the photodegradation of MO dye
The Effect of Mineral Ions Present in Tap Water on Photodegradation of Organic Pollutants: Future Perspectives
Photodegradation is the chemical conversion of large, toxic, and complex molecules into non-toxic, simpler, and lower molecular weight species due to light exposure. Heterogeneous photocatalysis has sufficient potential to degrade toxic organic pollutants present in wastewater. As industries discharge their effluents containing organic pollutants into natural water bodies, which penetrate into the subsurface through connected pores it is necessary to study this process in natural or tap water. Tap water (TW) is mainly obtained from underground wells having inorganic salts in a minute quantity with a conductivity of 500 μS/cm. TW contains inorganic anions, which affect the photocatalytic activity and photocatalysis process. The aim of this review is to evaluate the effect of TW on the photo-degradation of organic pollutants such as dyes, pharmaceutical products, pesticides, etc., with the support of the literature. The TW had a diverse effect on the photodegradation of organic pollutants; either it may enhance or decrease the rate of pollutants’ photodegradation
Arbutin Stabilized Silver Nanoparticles: Synthesis, Characterization, and Its Catalytic Activity against Different Organic Dyes
In this study, we report one-pot, single step synthesis of silver nanoparticles stabilized by using arbutin. The concentration of reducing agent (NaBH4) used in the preparation was kept at double, and arbutin was used as a stabilizing agent. The confirmation of prepared silver nanoparticles was done by color change and UV-Vis surface plasmon resonance peak at 435 nm in UV-Vis spectrum. Size dispersion of nanoparticles was carried out by Dynamic Light Scattering (DLS) and surface charge on nanoparticles. Stability was analyzed by Zeta potential. A strong negative charge indicated that nanoparticles are well stabilized throughout the solution. Morphology and 3D topographic images were obtained by Atomic Force Microscopy (AFM). The crystalline nature of nanoparticles was elucidated by X-ray diffraction analysis. The size and morphology of solid, well-grinded nanoparticles was proceeded by Scanning Electron Microscopy (SEM). The catalytic activities of nanoparticles were carried out against methylene blue, methyl orange, safranin, and eosin. The results demonstrated that synthesized silver nanoparticles commenced the degradation reaction of dyes mentioned. Prepared silver nanoparticles are found to have adequate catalytic activity, as it can be comprehended in time-dependent UV-Vis spectrums of dyes after treating them with AgNPs