3 research outputs found

    Reduction in Biogenic Amine Content in <i>Baechu</i> (Napa Cabbage) Kimchi by Biogenic Amine-Degrading Lactic Acid Bacteria

    No full text
    This study was performed to mine biogenic amine (BA)-degrading lactic acid bacteria (LAB) from kimchi and to investigate the effects of the LAB strains on BA reduction in Baechu kimchi fermentation. Among 1448 LAB strains isolated from various kimchi varieties, five strains capable of considerably degrading histamine and/or tyramine were selected through in vitro tests and identified as Levilactobacillus brevis PK08, Lactiplantibacillus pentosus PK05, Leuconostoc mesenteroides YM20, L. plantarum KD15, and Latilactobacillus sakei YM21. The selected strains were used to ferment five groups of Baechu kimchi, respectively. The LB group inoculated with L. brevis PK08 showed the highest reduction in tyramine content, 66.65% and 81.89%, compared to the control group and the positive control group, respectively. Other BA content was also considerably reduced, by 3.76–89.26% (five BAs) and 7.87–23.27% (four BAs), compared to the two control groups, respectively. The other inoculated groups showed similar or less BA reduction than the LB group. Meanwhile, a multicopper oxidase gene was detected in L. brevis PK08 when pursuing the BA degradation mechanism. Consequently, L. brevis PK08 could be applied to kimchi fermentation as a starter or protective culture to improve the BA-related safety of kimchi where prolific tyramine-producing LAB strains are present

    Evaluation of Bioactive Compounds and Antioxidative Activity of Fermented Green Tea Produced via One- and Two-Step Fermentation

    No full text
    This study investigated the influence of one- and two-step fermentation on bioactive compound production in fermented green tea, i.e., one-step fermented green tea (OFG) and two-step fermented green tea (TFG). One-step fermentation entailed acetic acid fermentation, while two-step fermentation consisted of lactic acid fermentation followed by acetic acid fermentation. Acetobacter pasteurianus PCH 325, isolated from an over-ripened peach, was selected for acetic acid fermentation based on its growth and organic acid production characteristics. Acetic acid fermentation conditions were optimized for one- and two-step fermentation: 3% fermentation alcohol for both processes; 8% and 4% sucrose, respectively; and fermentation at 25 °C for both processes. For lactic acid fermentation of TFG, the inoculum and optimized conditions reported previously were used. Under the optimized conditions, the acetic acid content in OFG and TFG increased 21.20- and 29.51-fold, respectively. Furthermore, through two-step fermentation, γ-aminobutyric acid and lactic acid were produced up to 31.49 ± 1.17 mg/L and 243.44 ± 58.15 mg/L, respectively, which together with acetic acid could contribute to the higher DPPH scavenging activity of TFG. This study suggests that two-step fermentation may be a valuable strategy in industry for raising the amount of acetic acid and/or providing additional bioactive compounds

    Lactic Acid Fermented Green Tea with Levilactobacillus brevis Capable of Producing γ-Aminobutyric Acid

    No full text
    The antioxidative activity and bioactive compounds content of lactic acid fermented green tea (LFG) fermented with an outstanding GABA-producing strain under optimised fermentation conditions were evaluated. Levilactobacillus strain GTL 79 was isolated from green tea leaves and selected based on acid production, growth potential, catechin resistance, and GABA production to be applied to LFG. Through 16S rRNA gene sequence analysis, the strain was identified as Levilactobacillus brevis. The optimised conditions were defined as fermentation at 37 °C with supplementation of 1% fermentation alcohol, 6% glucose, and 1% MSG and was determined to be most effective in increasing the lactic acid, acetic acid, and GABA content in LFG by 522.20%, 238.72% and 232.52% (or 247.58%), respectively. Initial DPPH scavenging activity of LFG fermented under the optimised conditions was 88.96% and rose to 94.38% by day 5. Polyphenols may contribute to the initial DPPH scavenging activity, while GABA and other bioactive compounds may contribute to the activity thereafter. Consequently, as GABA and other bioactive compounds found in green tea have been reported to have health benefits, future studies may prove that optimally fermented LFG by L. brevis GTL 79 could be useful in the food and health industries
    corecore