21 research outputs found
Leaf trichomes and foliar chemistry mediate defence against glasshouse thrips; Heliothrips haemorrhoidalis (Bouché) in Rhododendron simsii
Herbivore defence mechanisms are a costly diversion of resources away from growth and reproduction. Thus time-limited and tissue specific expression in critical plant parts is more efficient as defined by optimal defence theory. Surprisingly little is known about Rhododendron herbivore defence but it may be mediated by combined chemical and physical mechanisms. Rhododendron simsii Planch. survives cyclic infestations of a leaf-feeding thrips, Heliothrips haemorrhoidalis, which severely damage mature leaves but avoid terminal young leaves suggesting specific, localised defence expression. We examined correlations between the distribution of thrips and feeding damage with density of trichomes and the concentration of the diterpenoid, grayanotoxin I, a compound implicated in but not previously reported to meditate invertebrate defence in Rhododendron. Our data show that as leaves matured the number of thrips and area of feeding damage increased as trichome density and grayanotoxin I concentration decreased, this inverse correlation 10 suggesting trichomes and grayanotoxin I mediate defence in younger leaf tissue. Grayanotoxin I was tested against H. haemorrhoidalis and was toxic to immature life stages and repellent to the adult thrips, reducing numbers of first instars emerging on leaves when applied at ecologically relevant concentrations. This work demonstrates that the pattern of defensive traits in foliage of a species of Rhododendron is key to its ability to tolerate cyclic infestations of a generalist herbivore, effectively conserving vital tissues required for growth and reproduction
Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014
Problem: The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases.
Context: In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013.
Action: The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria.
Outcome: Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas.
Discussion: Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations’ effectiveness
Towards effective outbreak detection: a qualitative study to identify factors affecting nurses’ early warning surveillance practice in Solomon Islands
Abstract Background Intelligence generated by a surveillance system is dependent on the quality of data that are collected. We investigated the knowledge, attitudes and practices of nurses responsible for outbreak early warning surveillance data collection in Solomon Islands to identify factors that influence their ability to perform surveillance-related tasks with rigour. Methods We interviewed 12 purposively selected surveillance nurses and conducted inductive analysis on resulting data. Results Interviewees were knowledgeable and willing to contribute to the surveillance system. Constraining factors included the perception that surveillance was less important than patient care and could be ‘deferred’ during busy periods and wide variability in the application of case definitions. Motivating factors were frequent in-clinic training, formal recognition for good performance, incentives and designation of a focal point. Nurses held mixed views about the effect of mobile technologies on surveillance practice. Conclusions This study identified several challenges to consistent and accurate data collection and reporting. Engagement of different parts of the health system, including human resources and health facilities’ management, is needed to address these challenges
Enhanced surveillance during a public health emergency in a resource-limited setting: Experience from a large dengue outbreak in Solomon Islands, 2016-17.
Between August-2016 and April-2017, Solomon Islands experienced the largest and longest-running dengue outbreak on record in the country, with 12,329 suspected cases, 877 hospitalisations and 16 deaths. We conducted a retrospective review of related data and documents, and conducted key informant interviews to characterise the event and investigate the adaptability of syndromic surveillance for enhanced and expanded data collection during a public health emergency in a low resource country setting. While the outbreak quickly consumed available public and clinical resources, we found that authorities were able to scale up the conventional national syndrome-based early warning surveillance system to support the increased information demands during the event demonstrating the flexibility of the system and syndromic surveillance more broadly. Challenges in scaling up included upskilling and assisting staff with no previous experience of the tasks required; managing large volumes of data; maintaining data quality for the duration of the outbreak; harmonising routine and enhanced surveillance data and maintaining surveillance for other diseases; producing information optimally useful for response planning; and managing staff fatigue. Solomon Islands, along with other countries of the region remains vulnerable to outbreaks of dengue and other communicable diseases. Ensuring surveillance systems are robust and able to adapt to changing demands during emergencies should be a health protection priority
An outbreak investigation of scrub typhus in Western Province, Solomon Islands, 2014.
OBJECTIVE: To identify the etiology and risk factors of undifferentiated fever in a cluster of patients in Western Province, Solomon Islands, May 2014. METHODS: An outbreak investigation with a case control study was conducted. A case was defined as an inpatient in one hospital in Western Province, Solomon Islands with high fever (> 38.5 °C) and a negative malaria microscopy test admitted between 1 and 31 May 2014. Asymptomatic controls matched with the cases residentially were recruited in a ratio of 1:2. Serum samples from the subjects were tested for rickettsial infections using indirect micro-immunofluorescence assay. RESULTS: Nine cases met the outbreak case definition. All cases were male. An eschar was noted in five cases (55%), and one developed pneumonitis. We did not identify any environmental factors associated with illness. Serum samples of all five follow-up cases (100%) had strong-positive IgG responses to scrub typhus. All but one control (10%) had a moderate response against scrub typhus. Four controls had low levels of antibodies against spotted fever group rickettsia, and only one had a low-level response to typhus group rickettsia. DISCUSSION: This outbreak represents the first laboratory-confirmed outbreak of scrub typhus in the Western Province of Solomon Islands. The results suggest that rickettsial infections are more common than currently recognized as a cause of an acute febrile illness. A revised clinical case definition for rickettsial infections and treatment guidelines were developed and shared with provincial health staff for better surveillance and response to future outbreaks of a similar kind
Epidemic surveillance in a low resource setting: lessons from an evaluation of the Solomon Islands syndromic surveillance system, 2017
Abstract Background Solomon Islands is one of the least developed countries in the world. Recognising that timely detection of outbreaks is needed to enable early and effective response to disease outbreaks, the Solomon Islands government introduced a simple syndromic surveillance system in 2011. We conducted the first evaluation of the system and the first exploration of a national experience within the broader multi-country Pacific Syndromic Surveillance System to determine if it is meeting its objectives and to identify opportunities for improvement. Methods We used a multi-method approach involving retrospective data collection and statistical analysis, modelling, qualitative research and observational methods. Results We found that the system was well accepted, highly relied upon and designed to account for contextual limitations. We found the syndromic algorithm used to identify outbreaks was moderately sensitive, detecting 11.8% (IQR: 6.3–25.0%), 21.3% (IQR: 10.3–36.8%), 27.5% (IQR: 12.8–52.3%) and 40.5% (IQR: 13.5–65.7%) of outbreaks that caused small, moderate, large and very large increases in case presentations to health facilities, respectively. The false alert rate was 10.8% (IQR: 4.8–24.5%). Rural coverage of the system was poor. Limited workforce, surveillance resourcing and other ‘upstream’ health system factors constrained performance. Conclusions The system has made a significant contribution to public health security in Solomon Islands, but remains insufficiently sensitive to detect small-moderate sized outbreaks and hence should not be relied upon as a stand-alone surveillance strategy. Rather, the system should sit within a complementary suite of early warning surveillance activities including event-based, in-patient- and laboratory-based surveillance methods. Future investments need to find a balance between actions to address the technical and systems issues that constrain performance while maintaining simplicity and hence sustainability
Increased Rotavirus Prevalence in Diarrheal Outbreak Precipitated by Localized Flooding, Solomon Islands, 2014
Flooding on 1 of the Solomon Islands precipitated a nationwide epidemic of diarrhea that spread to regions unaffected by flooding and caused >6,000 cases and 27 deaths. Rotavirus was identified in 38% of case-patients tested in the city with the most flooding. Outbreak potential related to weather reinforces the need for global rotavirus vaccination
Enhanced syndromic surveillance for mass gatherings in the Pacific: a case study of the 11th Festival of Pacific Arts in Solomon Islands, 2012
Mass gatherings pose public health challenges to host countries, as they can cause or exacerbate disease outbreaks within the host location or elsewhere. In July 2012, the 11th Festival of Pacific Arts (FOPA), a mass gathering event involving 22 Pacific island states and territories, was hosted by Solomon Islands. An enhanced syndromic surveillance (ESS) system was implemented for the event. Throughout the capital city, Honiara, 15 sentinel sites were established and successfully took part in the ESS system, which commenced one week before the FOPA (25 June) and concluded eight days after the event (22 July). The ESS involved expanding on the existing syndromic surveillance parameters: from one to 15 sentinel sites, from four to eight syndromes, from aggregated to case-based reporting and from weekly to daily reporting. A web-based system was developed to enable data entry, data storage and data analysis. Towards the end of the ESS period, a focus group discussion and series of key informant interviews were conducted. The ESS was considered a success and played an important role in the early detection of possible outbreaks. For the period of the ESS, 1668 patients with syndrome presentations were received across the 15 sentinel sites. There were no major events of public health significance. Several lessons were learnt that are relevant to ESS in mass gathering scenarios, including the importance of having adequate lead in time for engagement and preparation to ensure appropriate policy and institutional frameworks are put in place
Ongoing outbreak of dengue serotype 3 in Solomon Islands, January to May 2013
Introduction\ud
\ud
In January 2013, clinicians in Honiara, Solomon Islands noted several patients presenting with dengue-like illness. Serum from three cases tested positive for dengue by rapid diagnostic test. Subsequent increases in cases were reported, and the outbreak was confirmed as being dengue serotype-3 by further laboratory tests. This report describes the ongoing outbreak investigation, findings and response. \ud
\ud
Methods\ud
\ud
Enhanced dengue surveillance was implemented in the capital, Honiara, and in the provinces. This included training health staff on dengue case definitions, data collection and reporting. Vector surveillance was also conducted. \ud
\ud
Results\ud
\ud
From 3 January to 15 May 2013, 5254 cases of suspected dengue were reported (101.8 per 10 000 population), including 401 hospitalizations and six deaths. The median age of cases was 20 years (range zero to 90), and 86% were reported from Honiara. Both Aedes aegyti and Aedes albopictus were identified in Honiara. Outbreak response measures included clinical training seminars, vector control activities, implementation of diagnostic and case management protocols and a public communication campaign. \ud
\ud
Discussion\ud
\ud
This was the first large dengue outbreak documented in Solomon Islands. Factors that may have contributed to this outbreak include a largely susceptible population, the presence of a highly efficient dengue vector in Honiara, a high-density human population with numerous breeding sites and favourable weather conditions for mosquito proliferation. Although the number of cases has plateaued since 1 April, continued enhanced nationwide surveillance and response activities are necessary
Epidemic curve of the dengue serotype 2 outbreak, Solomon Islands, September 2016-April 2017.
<p>Epidemic curve of the dengue serotype 2 outbreak, Solomon Islands, September 2016-April 2017.</p