25 research outputs found

    The Effect of Iron Oxide Nanoparticles on the Menaquinone-7 Isomer Composition and Synthesis of the Biologically Significant All-<i>Trans</i> Isomer

    No full text
    Menaquinone-7 (MK-7) is the most therapeutically valuable K vitamin owing to its excellent bioavailability. MK-7 occurs as geometric isomers, and only all-trans MK-7 is bioactive. The fermentation-based synthesis of MK-7 entails various challenges, primarily the low fermentation yield and numerous downstream processing steps. This raises the cost of production and translates to an expensive final product that is not widely accessible. Iron oxide nanoparticles (IONPs) can potentially overcome these obstacles due to their ability to enhance fermentation productivity and enable process intensification. Nevertheless, utilisation of IONPs in this regard is only beneficial if the biologically active isomer is achieved in the greatest proportion, the investigation of which constituted the objective of this study. IONPs (Fe3O4) with an average size of 11 nm were synthesised and characterised using different analytical techniques, and their effect on isomer production and bacterial growth was assessed. The optimum IONP concentration (300 Ī¼g/mL) improved the process output and resulted in a 1.6-fold increase in the all-trans isomer yield compared to the control. This investigation was the first to evaluate the role of IONPs in the synthesis of MK-7 isomers, and its outcomes will assist the development of an efficient fermentation system that favours the production of bioactive MK-7

    Surface modification of polycaprolactone nanofibers through hydrolysis and aminolysis: a comparative study on structural characteristics, mechanical properties, and cellular performance

    No full text
    Abstract Hydrolysis and aminolysis are two main commonly used chemical methods for surface modification of hydrophobic tissue engineering scaffolds. The type of chemical reagents along with the concentration and treatment time are main factors that determine the effects of these methods on biomaterials. In the present study, electrospun poly (ā„‡-caprolactone) (PCL) nanofibers were modified through hydrolysis and aminolysis. The applied chemical solutions for hydrolysis and aminolysis were NaOH (0.5ā€“2Ā M) and hexamethylenediamine/isopropanol (HMD/IPA, 0.5ā€“2Ā M) correspondingly. Three distinct incubation time points were predetermined for the hydrolysis and aminolysis treatments. According to the scanning electron microscopy results, morphological changes emerged only in the higher concentrations of hydrolysis solution (1Ā M and 2Ā M) and prolonged treatment duration (6 and 12Ā h). In contrast, aminolysis treatments induced slight changes in the morphological features of the electrospun PCL nanofibers. Even though surface hydrophilicity of PCL nanofibers was noticeably improved through the both methods, the resultant influence of hydrolysis was comparatively more considerable. As a general trend, both hydrolysis and aminolysis resulted in a moderate decline in the mechanical performance of PCL samples. Energy dispersive spectroscopy analysis indicated elemental changes after the hydrolysis and aminolysis treatments. However, X-ray diffraction, thermogravimetric analysis, and infrared spectroscopy results did not show noticeable alterations subsequent to the treatments. The fibroblast cells were well spread and exhibited a spindle-like shape on the both treated groups. Furthermore, according to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the surface treatment procedures ameliorated proliferative properties of PCL nanofibers. These findings represented that the modified PCL nanofibrous samples by hydrolysis and aminolysis treatments can be considered as the potentially favorable candidates for tissue engineering applications

    Synthesis and Application of Amine Functionalized Iron Oxide Nanoparticles on Menaquinone-7 Fermentation: A Step towards Process Intensification

    No full text
    Industrial production of menaquione-7 by Bacillus subtilis natto is associated with major drawbacks. To address the current challenges in menaquione-7 fermentation, studying the effect of magnetic nanoparticles on the bacterial cells can open up a new domain for intensified menqainone-7 process. This article introduces the new concept of production and application of l-lysine coated iron oxide nanoparticles (l-Lys@IONs) as a novel tool for menaquinone-7 biosynthesis. l-Lys@IONs with the average size of 7 nm were successfully fabricated and were examined in a fermentation process of l-Lys@IONs decorated Bacillus subtilis natto. Based on the results, higher menaquinone-7 specific yield was observed for l-Lys@IONs decorated bacterial cells as compared to untreated bacteria. In addition, more than 92% removal efficacy was achieved by using integrated magnetic separation process. The present study demonstrates that l-Lys@IONs can be successfully applied during a fermentation of menaquinone-7 without any negative consequences on the culture conditions. This study provides a novel biotechnological application for IONs and their future role in bioprocess intensification

    Lipoamino Acid Coated Superparamagnetic Iron Oxide Nanoparticles Concentration and Time Dependently Enhanced Growth of Human Hepatocarcinoma Cell Line (Hep-G2)

    No full text
    Superparamagnetic iron oxide nanoparticles (SPION) have been widely used in medicine for magnetic resonance imaging, hyperthermia, and drug delivery applications. The effect of SPION on animal cells has been a controversial issue on which there are many contradictions. This study focused on preparation of SPION with novel biocompatible coatings, their characterization, and cytotoxicity evaluation. An amino acid (glycine) and two novel lipo-amino acids (2 amino-hexanoic acid and 2 amino-hexadecanoic acid) coated magnetic nanoparticles were characterized by various physicochemical means such as X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), differential scanning calorimetry (DSC), and infrared spectroscopy (FT-IR). The cytotoxicity profile of the synthesized nanoparticles on Hep-G2 cells as measured by MTT assay showed the nanoparticles are nontoxic and the cell growth is promoted by SPION. Moreover, lipoamino acid coating SPION appear more beneficial than the other ones. By increasing concentration of SPION, growth enhancing impact will attenuate and toxicity will appear. Although the aggregation of SPION can affect the results, the gradual delivery of ferric/ferrous ions into cells is the main cause of this growth promotion effect. Conclusively, this study shows that lipoamino acid coating SPION can be used for various biomedical purposes

    Impact of 3ā€“Aminopropyltriethoxysilane-Coated Iron Oxide Nanoparticles on Menaquinone-7 Production Using B. subtilis

    No full text
    One of the major issues associated with industrial production of menaquinone-7 (MKā€“7) is the low fermentation yield. In this study, we investigated the effect of iron oxide nanoparticles coated with 3ā€“aminopropyltriethoxysilane (IONs@APTES) on the production of MKā€“7 using B. subtilis (ATCC 6633). Decoration of B. subtilis cells with IONs@APTES significantly enhanced both MKā€“7 production and yield. An approximately two-fold increase in MKā€“7 production (41 mg/L) was observed in the presence of 500 Āµg/mL IONs@APTES, as compared to MKā€“7 production using untreated bacteria (22 mg/L). This paper, therefore, illustrates the immense biotechnological potential of IONs@APTES in increasing MKā€“7 concentration using B. subtilis, and its future role in bioprocess engineering

    Nano Iron Oxide-PCL Composite as an Improved Soft Tissue Scaffold

    No full text
    Iron oxide nanoparticles were employed to fabricate a soft tissue scaffold with enhanced physicochemical and biological characteristics. Growth promotion effect of L-lysine coated magnetite (Lys@Fe3O4) nanoparticles on the liver cell lines was proved previously. So, in the current experiment these nanoparticles were employed to fabricate a soft tissue scaffold with growth promoting effect on the liver cells. Lys@Fe3O4 nanoparticles were synthesized via co-precipitation reaction. Resulted particles were ~7 nm in diameter and various concentrations (3, 5, and 10 wt%) of these nanoparticles were used to fabricate nanocomposite PCL fibers. Electrospinning technique was employed and physicochemical characteristics of the resulted nanofibers were evaluated. Electron micrographs and EDX-mapping analysis showed that nanoparticles were well dispersed in the PCL fibers and no bead structure were formed. As expected, incorporation of Lys@Fe3O4 to the PCL nanofibers resulted in a reduction in hydrophobicity of the scaffold. Nanocomposite scaffolds were shown increased tensile strength with increasing concentration of employed nanoparticles. In contrast to PCL scaffold, nearly 150% increase in the cell viability was observed after 3-days exposure to the nanocomposite scaffolds. This study indicates that incorporation of magnetite nanoparticles in the PCL fibers make them more prone to cell attachment. However, incorporated nanoparticles can provide the attached cells with valuable iron element and consequently promote the cells growth rate. Based on the results, magnetite enriched PCL nanofibers could be introduced as a scaffold to enhance the biological performance for liver tissue engineering purposes

    The role of magnetic iron oxide nanoparticles in the bacterially induced calcium carbonate precipitation

    No full text
    Recently, magnetic iron oxide nanoparticles (IONs) have been used to control and modify the characteristics of concrete and mortar. Concrete is one of the most used materials in the world; however, it is susceptible to cracking. Over recent years, a sustainable biotechnological approach has emerged as an alternative approach to conventional techniques to heal the concrete cracks by the incorporation of bacterial cells and nutrients into the concrete matrix. Once cracking occurs, CaCO3 is induced and the crack is healed. Considering the positive effects of IONs on the concrete properties, the effect of these nanoparticles on bacterial growth and CaCO3 biosynthesis needs to be evaluated for their possible application in bio self-healing concrete. In the present work, IONs were successfully synthesized and characterized using various techniques. The presence of IONs showed a significant effect on both bacterial growth and CaCO3 precipitation. The highest bacterial growth was observed in the presence of 150Ā Ī¼g/mL IONs. The highest concentration of induced CaCO3 (34.54Ā g/L) was achieved when the bacterial cells were immobilized with 300Ā Ī¼g/mL of IONs. This study provides new data and supports the possibility of using IONs as a new tool in designing the next generation of bio self-healing concrete

    Optimization of reaction parameters for the green synthesis of zero valent iron nanoparticles using pine tree needles

    No full text
    In the current study, the optimal reaction condition for fabrication of INPs by using pine tree (Pinus eldarica) leaf extract was developed. A fractional factorial design was utilized to screen the effective parameters in the green synthesis reaction, and central composite face design was employed to achieve the optimal reaction condition. Leaf extract and iron precursor concentrations were found to be the most effective parameters for the fabrication of INPs. Physicochemical characteristics of the obtained nanoparticles were evaluated by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), and derivative thermo gravimetric (DTG). The prepared particles were found to be zero-valent iron nanoparticles without any iron oxide impurities. Nanoparticles were spherical in shape with diameters ranging from 8 nm to 34 nm with a mean particle size of 18 nm. The fabricated particles were amorphous with a low magnetization value of 33 memu/g

    Bio-reinforced self-healing concrete using magnetic iron oxide nanoparticles

    No full text
    Immobilization has been reported as an efficient technique to address the bacterial vulnerability for application in bio self-healing concrete. In this study, for the first time, magnetic iron oxide nanoparticles (IONs) are being practically employed as the protective vehicle for bacteria to evaluate the self-healing performance in concrete environment. Magnetic IONs were successfully synthesized and characterized using different techniques. The scanning electron microscope (SEM) images show the efficient adsorption of nanoparticles to the Bacillus cells. Microscopic observation illustrates that the incorporation of the immobilized bacteria in the concrete matrix resulted in a significant crack healing behavior, while the control specimen had no healing characteristics. Analysis of bio-precipitates revealed that the induced minerals in the cracks were calcium carbonate. The effect of magnetic immobilized cells on the concrete water absorption showed that the concrete specimens supplemented with decorated bacteria with IONs had a higher resistance to water penetration. The initial and secondary water absorption rates in bio-concrete specimens were 26% and 22% lower than the control specimens. Due to the compatible behavior of IONs with the concrete compositions, the results of this study proved the potential application of IONs for developing a new generation of bio self-healing concrete
    corecore