1 research outputs found
Nanostructured silicon production from quartzite ore by low-energy wet blending of the reagents, reduction in controlled atmosphere, and hydrometallurgy
High-purity porous nanostructured silicon particles were successfully produced from quartzite rock via the multi-step processing route including primary acid leaching of crashed quartzite feedstock, wet blending of quartzite and magnesium powder, reduction, and final multi-stage hydrometallurgical purification of the products. Laboratory-grade silica was also treated for comparison. The effect of silica purity, reactants’ molar ratios (Mg:SiO2), and hydrometallurgical refining on reaction products were investigated and discussed through the results of X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) equipped with energy dispersive spectroscopy (EDS) and inductively coupled plasma-mass spectrometry (ICP-MS). The results indicated that the combination of primary acid treatment, combustion synthesis in controlled atmosphere, and final special acid leaching process is an efficient route for the production of porous nanostructured elemental silicon particles with a uniform structure that can be used in several applications in the energy sector with or without further processing. Keywords: Porous nanostructured silicon particles, Reduction by magnesium, Hydrometallurgical treatment, Quartzite rock