31 research outputs found

    Brown midrib 6 and 12 Genes introgression in two nigerien and one malian sorghum varieties: A practical guide to young scientists with limited molecular facility

    Get PDF
    Introgression of bmr genes from less adapted donor parent to well adapted high yielding biomass varieties with poor nutritional value is very important for sustainable cattle feeding during pasture scare time in the Sahel. The main objective of this work was to introgress bmr6 and bmr12 genes in Nigerien and Malian sorghum varieties background for dual purpose grain and biomass potential. The plant material was composed of two improved sorghum varieties (Sepon82 and Kalla Kene) and El mota a farmer preferred variety as recurrent parents. bmr donor parents were redlan bmr6, Tx630 bmr12 and Wheatland bmr12. The hand emasculation technique was used to introgress bmr genes in recurrent parents to produce F3 and BC1F3 populations at Sotuba research Station in Mali from January 2016 to June 2017. Anthocyanin pigment and heterosis effects were key phenotypic traits to identify F1 and BC1F1 plants during the population development. Anthocyanin allowed the identification of F1 plants in a cross involving anthocyanin (purple plant) and tan plants, while for both tan plants cross, heterosis effect was major key to discriminate F1 from parental lines and bmr segregation in F2 to ascertain successful crosses. The χ2 test was used to analyze bmr segregation ration. Segregation ratios of bmr plants in F2 and BC1F2 showed a good fit of a single recessive gene (3:1). bmr 6 and 12 genes were successfully transferred to three recurrent parents varieties which are at F4 and BC1F3 generation for grain and biomass yields potential tests in Niger during the 2017 cropping season

    Quinine Treatment Selects the pfnhe-1 ms4760-1 Polymorphism in Malian Patients with Falciparum Malaria

    Get PDF
    Background. The mechanism of Plasmodium falciparum resistance to quinine is not known. In vitro quantitative trait loci mapping suggests involvement of a predicted P. falciparum sodium-hydrogen exchanger (pfnhe-1) on chromosome 13. Methods. We conducted prospective quinine efficacy studies in 2 villages, Kolle and Faladie, Mali. Cases of clinical malaria requiring intravenous therapy were treated with standard doses of quinine and followed for 28 days. Treatment outcomes were classified using modified World Health Organization protocols. Molecular markers of parasite polymorphisms were used to distinguish recrudescent parasites from new infections. The prevalence of pfnhe-1 ms4760-1 among parasites before versus after quinine treatment was determined by direct sequencing. Results. Overall, 163 patients were enrolled and successfully followed. Without molecular correction, the mean adequate clinical and parasitological response (ACPR) was 50.3% (n = 163). After polymerase chain reaction correction to account for new infections, the corrected ACPR was 100%. The prevalence of ms4760-1 increased significantly, from 26.2% (n = 107) before quinine treatment to 46.3% (n = 54) after therapy (P = .01). In a control sulfadoxine-pyrimethamine study, the prevalence of ms4760-1 was similar before and after treatment. Conclusions. This study supports a role for pfnhe-1 in decreased susceptibility of P. falciparum to quinine in the field.Howard Hughes Medical Institute [55005502]; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; European and Developing Countries Clinical Trials Partnership [EDCTP IP_07_31060_002]info:eu-repo/semantics/publishedVersio

    Capacitating Agricultural Smallholders with Climate Advisories and Insurance Development (CASCAID-II): 2019 West Africa partners meeting proceedings

    No full text
    CASCAID-II aims to reduce agricultural investment risk from smallholder farm to whole value chains to improve agricultural productivity and food security together with the profitability of agricultural enterprises, in a context of increasing smallholder integration in urban-driven markets. The 2019 West Africa partners meeting was organized to develop a common understanding and agreement on the project goals and approach to de-risking smallholder value chains in West Africa, and to discuss an operational set of priority research questions addressable within that approach. This document describes the priority value chain and R&D activities identified during the meeting and the articulation of sustainable intensification and risk management goals inside a single, actionable theory of change

    The hypoglycemic and cytotoxic activity of the leave extract of Combretum glutinosumPerr ex DC

    No full text
    Combretum glutinosum is widely used in Guinean traditional medicine in the treatment of various diseases such as diabetes and cancer. Aiming to find out the potential of C. glutinosumantidiabetic and cytotoxicity, the extracts were tested on the Han Wistar rat and the cytotoxicity on cancerous cell lines. Polar extracts of C. glutinosum normalized the glycaemia level 2H after intra peritoneal glucose injection in rat. Apolar extract of C. glutinosum was cytotoxic against cancer cell lines [IC50≤ 10μg/ml]. No cytotoxic effet was reported with semi polar and polar extracts. Bioguided fractionation of SbDF conducted to isolation the compounds 5 hydroxy-7-4’-dimethoxy flavone, lupenone and lupeol. Data in the literature confirms the anticancer and antidiabetic activity of these compounds. Based on our results,C. glutinosumcould be therefore investigated for new antidiabetic or anticancer drug.info:eu-repo/semantics/publishe

    In vitro antiprotozoal, antimicrobial and antitumor activity of Pavetta crassipes K. Schum leaf extracts.

    No full text
    AIM OF THE STUDY: To study the potential benefit of the traditional medicinal plant Pavetta crassipes K. Schum (Rubiaceae), which is widely distributed throughout West Africa, the methanol and dichloromethane extracts were isolated from the plant leaves to determine if they exhibited antiprotozoal, antibacterial, antifungal or antitumor activity in vitro. MATERIALS AND METHODS: The methanol and dichloromethane extracts and their specific fractions were obtained using bioassay-guided fractionation and investigated for antiproliferative activity in vitro in microorganisms (Staphylococcus aureus, Escherichia coli and Candida albicans), protozoans (Trypanosoma cruzi, Trypanosoma brucei, Leishmania infantum and Plasmodium falciparum), and cancer (U373, PC3, MXT and A549) and normal cell lines (NHDF and MRC-5). RESULTS: Most of the alkaloid fractions investigated exhibited antiproliferative activity in all the cancer cell lines, microorganisms and protozoans studied. CONCLUSIONS: The benefit of Pavetta crassipes as a traditional medicinal remedy was confirmed using antiprotozoal and cytotoxicity assays in vitro. These analyses revealed that the components present in the alkaloid extract of Pavetta crassipes are responsible for its antiprotozoal and cytotoxic efficacy.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Terminalia albida treatment improves survival in experimental cerebral malaria through reactive oxygen species scavenging and anti-inflammatory properties

    No full text
    International audienceBackground: The development of Plasmodium resistance to the last effective anti-malarial drugs necessitates the urgent development of new anti-malarial therapeutic strategies. To this end, plants are an important source of new molecules. The objective of this study was to evaluate the anti-malarial effects of Terminalia albida, a plant used in Guinean traditional medicine, as well as its anti-inflammatory and antioxidant properties, which may be useful intreating cases of severe malaria.Methods: In vitro antiplasmodial activity was evaluated on a chloroquine-resistant strain of Plasmodium falciparum (K-1). In vivo efficacy of the plant extract was measured in the experimental cerebral malaria model based on Plasmodium berghei (strain ANKA) infection. Mice brains were harvested on Day 7–8 post-infection, and T cells recruitment to the brain, expression levels of pro- and anti-inflammatory markers were measured by flow cytometry, RT-qPCR and ELISA. Non-malarial in vitro models of inflammation and oxidative response were used to confirm Terminalia albida effects. Constituents of Terminalia albida extract were characterized by ultra‐high performance liquid chromatography coupled with high resolution mass spectrometry. Top ranked compounds were putatively identified using plant databases and in silico fragmentation patterns.Results: In vitro antiplasmodial activity of Terminalia albida was confirmed with an IC50 of 1.5 μg/mL. In vivo, Terminalia albida treatment greatly increased survival rates in P. berghei-infected mice. Treated mice were all alive until Day 12, and the survival rate was 50% on Day 20. Terminalia albida treatment also significantly decreased parasitaemia by 100% on Day 4 and 89% on Day 7 post-infection. In vivo anti-malarial activity was related to anti-inflammatory properties, as Terminalia albida treatment decreased T lymphocyte recruitment and expression of pro-inflammatory markers in brains of treated mice. These properties were confirmed in vitro in the non-malarial model. In vitro, Terminalia albida also demonstrated a remarkable dosedependent neutralization activity of reactive oxygen species. Twelve compounds were putatively identified in Terminalia albida stem bark. Among them, several molecules already identified may be responsible for the different biological activities observed, especially tannins and triterpenoids
    corecore