3 research outputs found

    Major proliferation of transposable elements shaped the genome of the soybean rust pathogen Phakopsora pachyrhizi

    Full text link
    With >7000 species the order of rust fungi has a disproportionately large impact on agriculture, horticulture, forestry and foreign ecosystems. The infectious spores are typically dikaryotic, a feature unique to fungi in which two haploid nuclei reside in the same cell. A key example is Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease, one of the world's most economically damaging agricultural diseases. Despite P. pachyrhizi's impact, the exceptional size and complexity of its genome prevented generation of an accurate genome assembly. Here, we sequence three independent P. pachyrhizi genomes and uncover a genome up to 1.25 Gb comprising two haplotypes with a transposable element (TE) content of ~93%. We study the incursion and dominant impact of these TEs on the genome and show how they have a key impact on various processes such as host range adaptation, stress responses and genetic plasticity.ISSN:2041-172

    Major proliferation of transposable elements shaped the genome of the soybean rust pathogen Phakopsora pachyrhizi

    Get PDF
    Asian soybean rust caused by Phakopsora pachyrhizi is an important plant pathogen, but an accurate genome assembly for this fungus has been lacking. This study sequenced three independent P. pachyrhizi isolates and generated reference quality assemblies and genome annotations, representing a critical step for further in-depth studies of this pathogen and the development of new methods of control
    corecore