3 research outputs found
Non-invasive, multimodal analysis of cortical activity, blood volume and neurovascular coupling in infantile spasms using EEG-fNIRS monitoring
Although infantile spasms can be caused by a variety of etiologies, the clinical features are stereotypical. The neuronal and vascular mechanisms that contribute to the emergence of infantile spasms are not well understood. We performed a multimodal study by simultaneously recording electroencephalogram and functional Near-infrared spectroscopy in an intentionally heterogeneous population of six children with spasms in clusters. Regardless of the etiology, spasms were accompanied by two phases of hemodynamic changes; an initial change in the cerebral blood volume (simultaneously with each spasm) followed by a neurovascular coupling in all children except for the one with a large porencephalic cyst. Changes in cerebral blood volume, like the neurovascular coupling, occurred over frontal areas in all patients regardless of any brain damage suggesting a diffuse hemodynamic cortical response. The simultaneous motor activation and changes in cerebral blood volume might result from the involvement of the brainstem. The inconstant neurovascular coupling phase suggests a diffuse activation of the brain likely resulting too from the brainstem involvement that might trigger diffuse changes in cortical excitability. Keywords: Infantile spasm, Neurovascular coupling, Cerebral blood volume, Electroencephalography, Optical imagin
Effects of Methylphenidate on Default-Mode Network/Task-Positive Network Synchronization in Children With ADHD
OBJECTIVE: A failure of the anti-phase synchronization between default-mode (DMN) and task-positive networks (TPN) may be involved in a main manifestation of ADHD: moment-to-moment variability. The study investigated whereby methylphenidate may improve TPN/DMN synchronization in ADHD. METHOD: Eleven drug-naive ADHD children and 11 typically developing (TD) children performed a flanker task during functional magnetic resonance imaging. The ADHD group was scanned without and 1 month later with methylphenidate. The signal was analyzed by independent component analysis. RESULTS: The TD group showed anti-phase DMN/TPN synchronization. The unmedicated ADHD group showed synchronous activity in the posterior DMN only, which was positively correlated with response time variability for the flanker task. Methylphenidate initiated a partial anti-phase TPN/DMN synchronization, reduced variability, and abolished the variability/DMN correlation. CONCLUSION: Although results should be interpreted cautiously because the sample size is small, they suggest that a failure of the TPN/DMN synchronization could be involved in the moment-to-moment variability in ADHD. Methylphenidate initiated TPN/DMN synchronization, which in turn appeared to reduce variability
Biallelic pathogenic variants in the lanosterol synthase gene LSS involved in the cholesterol biosynthesis cause alopecia with intellectual disability, a rare recessive neuroectodermal syndrome.
International audiencePurpose Lanosterol synthase (LSS) gene was initially described in families with extensive congenital cataracts. Recently, a study has highlighted LSS associated with hypotrichosis simplex. We expanded the phenotypic spectrum of LSS to a recessive neuroectodermal syndrome formerly named alopecia with mental retardation (APMR) syndrome. It is a rare autosomal recessive condition characterized by hypotrichosis and intellectual disability (ID) or developmental delay (DD), frequently associated with early-onset epilepsy and other dermatological features. Methods Through a multicenter international collaborative study, we identified LSS pathogenic variants in APMR individuals either by exome sequencing or LSS Sanger sequencing. Splicing defects were assessed by transcript analysis and minigene assay. Results We reported ten APMR individuals from six unrelated families with biallelic variants in LSS. We additionally identified one affected individual with a single rare variant in LSS and an allelic imbalance suggesting a second event. Among the identified variants, two were truncating, seven were missense, and two were splicing variants. Quantification of cholesterol and its precursors did not reveal noticeable imbalance. Conclusion In the cholesterol biosynthesis pathway, lanosterol synthase leads to the cyclization of (S)-2,3-oxidosqualene into lanosterol. Our data suggest LSS as a major gene causing a rare recessive neuroectodermal syndrome