14 research outputs found

    Solid Solutions of Lindbergite–Glushinskite Series: Synthesis, Ionic Substitutions, Phase Transformation and Crystal Morphology

    No full text
    To clarify the crystal chemical features of natural and synthetic oxalates Me2+(C2O4)∙2H2O (Me2+ = Fe, Mn, Mg, Zn), including minerals of the humboldtine group, solid solutions of lindbergite Mn(C2O4)∙2H2O–glushinskite Mg(C2O4)∙2H2O were precipitated under various conditions, close to those characteristic of mineralization in biofilms: at the stoichiometric ratios ((Mn + Mg)/C2O4 = 1) and non-stochiometric ratios ((Mn + Mg)/C2O4 Fddd), while lindbergite has a monoclinic α-modification (sp. gr. C2/c). Mg ions incorporate lindbergite in much higher quantities than Mn ions incorporate glushinskite; moreover, Mn glushinskites are characterized by violations of long-range order in their crystal structure. Lindbergite–glushinskite transition occurs abruptly and can be classified as a first-order isodimorphic transition. The Me2+/C2O4 ratio and the presence of citric acid in the solution affect the isomorphic capacity of lindbergite and glushinskite, the width of the transition and the equilibrium Mg/Mn ratio. The transition is accompanied by continuous morphological changes in crystals and crystal intergrowths. Given the obtained results, it is necessary to take into account in biotechnologies aimed at the bioremediation/bioleaching of metals from media containing mixtures of cations (Mg, Mn, Fe, Zn)

    Iron Oxalate Humboldtine Crystallization by Fungus <i>Aspergillus niger</i>

    No full text
    Microfungi were able to alternate solid substrate in various environments and play a noticeable role in the formation of insoluble calcium oxalate crystals in subaerial biofilms on rock surfaces. The present work describes how iron oxalate dihydrate humboldtine is acquired under the influence of the acid-producing microscopic fungus Aspergillus niger on the surface of two iron- bearing mineral substrates in vitro. Pyrrhotite and siderite rocks, as well as the products of their alteration, were investigated using a complex of analytical methods, including powder X-ray diffraction, optical microscopy, scanning electron microscopy and EDX spectroscopy. The effect of the underlying rocks with different composition and solubility and different oxidation states of iron on Fe-oxalate crystallization and on the morphology of humboldtine crystals was shown. The mechanisms of humboldtine formation were discussed. The results obtained in vitro seem promising for using fungi in bioleaching iron and other metals from processed ores and for the development of environmentally friendly biotechnologies

    Iron Oxalate Humboldtine Crystallization by Fungus Aspergillus niger

    No full text
    Microfungi were able to alternate solid substrate in various environments and play a noticeable role in the formation of insoluble calcium oxalate crystals in subaerial biofilms on rock surfaces. The present work describes how iron oxalate dihydrate humboldtine is acquired under the influence of the acid-producing microscopic fungus Aspergillus niger on the surface of two iron- bearing mineral substrates in vitro. Pyrrhotite and siderite rocks, as well as the products of their alteration, were investigated using a complex of analytical methods, including powder X-ray diffraction, optical microscopy, scanning electron microscopy and EDX spectroscopy. The effect of the underlying rocks with different composition and solubility and different oxidation states of iron on Fe-oxalate crystallization and on the morphology of humboldtine crystals was shown. The mechanisms of humboldtine formation were discussed. The results obtained in vitro seem promising for using fungi in bioleaching iron and other metals from processed ores and for the development of environmentally friendly biotechnologies

    Synthesis and Characterization of (Ca,Sr)[C2O4]∙nH2O Solid Solutions: Variations of Phase Composition, Crystal Morphologies and in Ionic Substitutions

    No full text
    To study strontium (Sr) incorporation into calcium oxalates (weddellite and whewellite), calcium-strontium oxalate solid solutions (Ca,Sr)[C2O4]∙nH2O (n = 1, 2) are synthesized and studied by a complex of methods: powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Two series of solid solutions, isomorphous (Ca,Sr)[C2O4]&middot;(2.5 &minus; x)H2O) (space group I4/m) and isodimorphous Ca[C2O4]&middot;H2O(sp.gr. P21/c)&ndash;Sr[C2O4]&middot;H2O(sp.gr. P 1 - ), are experimentally detected. The morphogenetic regularities of their crystallization are revealed. The factors controlling this process are discussed

    Thermal Behavior and Phase Transition of Uric Acid and Its Dihydrate Form, the Common Biominerals Uricite and Tinnunculite

    No full text
    Single crystals and powder samples of uric acid and uric acid dihydrate, known as uricite and tinnunculite biominerals, were extracted from renal stones and studied using single-crystal and powder X-ray diffraction (SC and PXRD) at various temperatures, as well as IR spectroscopy. The results of high-temperature PXRD experiments revealed that the structure of uricite is stable up to 380 &deg;C, and then it loses crystallinity. The crystal structure of tinnunculite is relatively stable up to 40 &deg;C, whereas above this temperature, rapid release of H2O molecules occurs followed by the direct transition to uricite phase without intermediate hydration states. SCXRD studies and IR spectroscopy data confirmed the similarity of uricite and tinnunculite crystal structures. SCXRD at low temperatures allowed us to determine the dynamics of the unit cells induced by temperature variations. The thermal behavior of uricite and tinnunculite is essentially anisotropic; the structures not only expand, but also contract with temperature increase. The maximal expansion occurs along the unit cell parameter of 7 &Aring; (b in uricite and a in tinnunculite) as a result of the shifts of chains of H-bonded uric acid molecules and relaxation of the &pi;-stacking forces, the weakest intermolecular interactions in these structures. The strongest contraction in the structure of uricite occurs perpendicular to the (101) plane, which is due to the orthogonalization of the monoclinic angle. The structure of tinnunculite also contracts along the [010] direction, which is mostly due to the stretching mechanism of the uric acid chains. These phase transitions that occur within the range of physiological temperatures emphasize the particular importance of the structural studies within the urate system, due to their importance in terms of human health. The removal of supersaturation in uric acid in urine at the initial stages of stone formation can occur due to the formation of metastable uric acid dihydrate in accordance with the Ostwald rule, which would serve as a nucleus for the subsequent growth of the stone at further formation stages; afterward, it irreversibly dehydrates into anhydrous uric acid

    Bacterial Effect on the Crystallization of Mineral Phases in a Solution Simulating Human Urine

    No full text
    The effect of bacteria that present in the human urine (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus) was studied under the conditions of biomimetic synthesis. It was shown that the addition of bacteria significantly affects both the phase composition of the synthesized material and the position of crystallization boundaries of the resulting phosphate phases, which can shift toward more acidic (struvite, apatite) or toward more alkaline (brushite) conditions. Under conditions of oxalate mineralization, bacteria accelerate the nucleation of calcium oxalates by almost two times and also increase the amount of oxalate precipitates along with phosphates and stabilize the calcium oxalate dihydrate (weddellite). The multidirectional changes in the pH values of the solutions, which are the result of the interaction of all system components and the crystallization process, were analyzed. The obtained results are the scientific basis for understanding the mechanisms of bacterial involvement in stone formation within the human body and the creation of biotechnological methods that inhibit this process

    Carbonate and Oxalate Crystallization Effected by the Metabolism of Fungi and Bacteria in Various Trophic Conditions: The Case of <i>Penicillium chrysogenum</i> and <i>Penicillium chrysogenum</i> with <i>Bacillus subtilis</i>

    No full text
    The present work contributed to the patterns of crystallization affected by the metabolism of fungi and bacteria in various trophic conditions and specifically covers the case of Penicillium chrysogenum and P. chrysogenum with Bacillus subtilis. The cultivation of microorganisms was carried out on the dolomitic calcite marble in liquid Czapek–Dox nutrient medium with glucose concentrations of 1, 10 and 30 g/L. The study of the crystal component of mycelium formed on the marble surface was supported through powder X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy; the quantitative content of the extracellular polymer substance (EPS) and low-molecular-weight organic acids (LMWOAs) in the medium was determined through chromatography–mass spectrometry (GC-MS). The results obtained clearly demonstrated the unique ability of the fungus P. chrysogenum to not only release organic acids (primarily oxalic), but the EPS also which significantly affected the pH of the culture liquid and, accordingly, the carbonate and oxalate crystallization. Carbonate crystallization manifested in the presence of Bacillus subtilis as well. The transition from oxalate crystallization to carbonate and vice versa could occur with a change in the species composition of the microbial community as well as with a change in the nutritional value medium. Under the conditions closest to natural conditions (glucose content of 1 g/L), through the action of P. chrysogenum, oxalate crystallization occurred, and through the action of P. chrysogenum with B. subtilis, carbonate crystallization was observed. The identified patterns can be used to reveal the role of fungi and bacteria in the oxalate–carbonate pathway

    Structure Refinement and Thermal Stability Studies of the Uranyl Carbonate Mineral Andersonite, Na<sub>2</sub>Ca[(UO<sub>2</sub>)(CO<sub>3</sub>)<sub>3</sub>]·(5+<i>x</i>)H<sub>2</sub>O

    No full text
    A sample of uranyl carbonate mineral andersonite, Na2Ca[(UO2)(CO3)3]&#183;5&#8722;6H2O, originating from the Cane Springs Canyon, San Juan Co., UT, USA was studied using single-crystal and powder X-ray diffraction at various temperatures. Andersonite is trigonal, R&#8722;3m, a = 17.8448(4), c = 23.6688(6) &#197;, V = 6527.3(3) &#197;3, Z = 18, R1 = 0.018. Low-temperature SCXRD determined the positions of H atoms and disordered H2O molecules, arranged within the zeolite-like channels. The results of high-temperature PXRD experiments revealed that the structure of andersonite is stable up to 100 &#176;C; afterwards, it loses crystallinity due to release of H2O molecules. Taking into account the well-defined presence of H2O molecules forming channels&#8217; walls that to the total of five molecules p.f.u., we suggest that the formula of andersonite is Na2Ca[(UO2)(CO3)3]&#183;(5+x)H2O, where x &#8804; 1. The thermal behavior of andersonite is essentially anisotropic with the lowest values of the main thermal expansion coefficients in the direction perpendicular to the channels (plane (001)), while the maximal expansion is observed along the c axis&#8212;in the direction of channels. The thermal expansion around 80 &#176;C within the (001) plane becomes negative due to the total release of &#8220;zeolitic&#8222; H2O molecules. The information-based structural complexity parameters of andersonite were calculated after the removal of all the disordered atoms, leaving only the predominantly occupied sites, and show that the crystal structure of the mineral should be described as complex, possessing 4.535 bits/atom and 961.477 bits/cell, which is comparative to the values for another very common natural uranyl carbonate, liebigite
    corecore