3 research outputs found

    Influence of Organic-Modified Inorganic Matrices on the Optical Properties of Palygorskite–Curcumin-Type Hybrid Materials

    No full text
    Clays are very important from an economic and application point of view, as they are suitable hosts for organic compounds. In order to diversify the fields of application, they are structurally modified by physical or chemical methods with cationic species, and/or different bifunctional compounds, such as organosilanes. In this study, palygorskite was modified with (3-Aminopropyl) triethoxysilane, which was subsequently modified at the amino group by grafting an acetate residue. By using this strategy, two types of host hybrid materials were obtained on which curcumin derivatives were deposited. The composites obtained were structurally characterized and their photophysical properties were investigated in relation to the structure of the host matrices and interactions with curcumin-type visiting species. The hybrid composites have different colors (orange, yellow, pink), depending on the polarity of the inorganic matrices modulated by different organic groups grafted at the surface. Fluorescence emission in the visible range is characterized by the presence of two emission maxima, one belonging to the chromophore and the other influenced by the physical interactions between auxochromes and host matrices. These hybrid materials, compared to other composite structures, are obtained by a simple adsorption process. They are temperature stable in aggressive environments (acid/base) and render the fluorescent properties of dyes redundant, with improved luminescent performance compared to them

    Effect of Modified Silica Materials on Polyvinyl Chloride (PVC) Substrates to Obtain Transparent and Hydrophobic Hybrid Coatings

    No full text
    In this research, we report a simple and inexpensive way to prepare transparent and hydrophobic hybrid coatings through deposition of different silica materials on polyvinyl chloride (PVC) substrates. The silica materials were prepared using an acid-catalyzed sol–gel method at room temperature (25 ± 2 °C), using alkoxysilanes: tetraethoxysilane (TEOS), as the silica source, and ethoxydimethylvinylsilane (DMVES), triethoxyoctylsilane (OTES), and trimethoxyhexadecylsilane (HDTMES), as modifier agents. The obtained materials were characterized (either as powders or as thin films) by Fourier-transform infrared spectroscopy (FTIR), UV/Vis spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and water contact-angle measurements. UV/Vis spectra showed that the PVC substrate coated with the silica material containing TEOS/DMVES/OTES had a transmittance of about 90% in the wavelength range of 650–780 nm. The water contact angles increased from 83° for uncoated PVC substrate to ~94° for PVC substrates coated with the sol–gel silica materials. These PVC films with hybrid silica coatings can be used as the materials for outdoor applications, such as energy-generating solar panel window blinds or PVC clear Windmaster outdoor blinds

    Physicochemical and Morphological Properties of Hybrid Films Containing Silver-Based Silica Materials Deposited on Glass Substrates

    No full text
    The main goal of this study was to present a facile and inexpensive approach for the preparation of hybrid coatings by the deposition under ambient air conditions of silver-based silica materials on glass substrates, which can be used to improve solar cells’ performance. The silica materials containing silver nanoparticles (AgNPs) were synthesized by the hydrolytic condensation of tetraethylorthosilicate (TEOS), triethoxymethylsilane (MTES), and trimethoxyhexadecylsilane (HDTMES), under acidic conditions, at room temperature (25 ± 2 °C). The silver nitrate solution (AgNO3, 0.1 wt. %) was used as a source of Ag+ ions. The final samples were investigated through Fourier Transform Infrared Spectroscopy–Attenuated Total Reflectance (FTIR–ATR), Transmission Electron Microscopy equipped with energy dispersive X–ray (TEM–EDX), UV–Vis spectroscopy, Atomic Force Microscopy (AFM), and Raman Spectroscopy (RS). The TEM images confirmed the formation of AgNPs and were found to be around 3 nm. It was observed that AgNPs were embedded in the silica matrix. EDX also confirmed the presence of the resulting AgNPs within the silica material. AFM images demonstrated that the morphology of the hybrid films’ surfaces can be changed as a function of sol–gel composition. RS analysis indicated that silanol groups were significantly present on the silver-based silica film surface. The UV–Vis spectra revealed that the hybrid coatings presented a reflectance of ~8%, at 550 nm. This study will enhance the value of nanocoating technology in optoelectronics, particularly in the development of nanostructures that improve the performance in thin-film solar cells
    corecore