3 research outputs found

    Removal of VOCs by Ozone: n-Alkane Oxidation under Mild Conditions

    No full text
    Volatile organic compounds (VOCs) have a negative effect on both humans and the environment; therefore, it is crucial to minimize their emission. The conventional solution is the catalytic oxidation of VOCs by air; however, in some cases this method requires relatively high temperatures. Thus, the oxidation of short-chain alkanes, which demonstrate the lowest reactivity among VOCs, starts at 250–350 °C. This research deals with the ozone catalytic oxidation (OZCO) of alkanes at temperatures as low as 25–200 °C using an alumina-supported manganese oxide catalyst. Our data demonstrate that oxidation can be significantly accelerated in the presence of a small amount of O3. In particular, it was found that n-C4H10 can be readily oxidized by an air/O3 mixture over the Mn/Al2O3 catalyst at temperatures as low as 25 °C. According to the characterization data (SEM-EDX, XRD, H2-TPR, and XPS) the superior catalytic performance of the Mn/Al2O3 catalyst in OZCO stems from a high concentration of Mn2O3 species and oxygen vacancies
    corecore