6 research outputs found

    Hydrogels Based Drug Delivery Synthesis, Characterization and Administration

    No full text
    Hydrogels represent 3D polymeric networks specially designed for various medical applications. Due to their porous structure, they are able to swollen and to entrap large amounts of therapeutic agents and other molecules. In addition, their biocompatibility and biodegradability properties, together with a controlled release profile, make hydrogels a potential drug delivery system. In vivo studies have demonstrated their effectiveness as curing platforms for various diseases and affections. In addition, the results of the clinical trials are very encouraging and promising for the use of hydrogels as future target therapy strategies

    PEGylated Gold Nanoparticles with Interesting Plasmonic Properties Synthesized Using an Original, Rapid, and Easy-to-Implement Procedure

    No full text
    In this letter, we report a new, one-step, rapid, and easy-to-implement method for the synthesis of PEGylated gold nanoparticles (PEG-AuNPs) having a narrow size distribution and very interesting plasmonic properties. Unmodified polyethylene glycol molecules with a molecular weight of 1000 g/mole (PEG1000) have been employed as reducing and capping agents for the synthesis of spherical gold nanoparticles having an average diameter of 35 nm, within a few minutes. The novelty of the herein proposed synthesis method consists in the fact that the synthesis takes place inside of a sealed bottle flask containing aqueous solutions of PEG1000, tetrachloroauric(III) acid (HAuCl4), and NaOH, placed in the center of a microwave oven, capable to provide a very uniform temperature environment. It turned out that, during the very short synthesis procedure (2 minutes), PEG 1000 suffers an oxidative transformation in such a manner that its terminal alcohol groups (-CH2-OH) are transformed in carboxylate ones (-COO−). The as-synthesized PEG-AuNPs possess very interesting plasmonic properties allowing the detection of different molecules by means of SER spectroscopy performed either in liquid droplets or on solid spots. As a consequence of their unique plasmonic properties, the SER spectra acquired using this new class of nanoparticles on different molecules of interest (methylene blue, rhodamine 6G, doxorubicin, and 5-fluorouracil) are highly reproducible, making them ideal candidates for further use as SERS substrates

    Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties

    No full text
    Efficient use of magnetic hyperthermia in clinical cancer treatment requires biocompatible magnetic nanoparticles (MNPs), with improved heating capabilities. Small (~34 nm) and large (~270 nm) Fe3O4-MNPs were synthesized by means of a polyol method in polyethylene-glycol (PEG) and ethylene-glycol (EG), respectively. They were systematically investigated by means of X-ray diffraction, transmission electron microscopy and vibration sample magnetometry. Hyperthermia measurements showed that Specific Absorption Rate (SAR) dependence on the external alternating magnetic field amplitude (up to 65 kA/m, 355 kHz) presented a sigmoidal shape, with remarkable SAR saturation values of ~1400 W/gMNP for the small monocrystalline MNPs and only 400 W/gMNP for the large polycrystalline MNPs, in water. SAR values were slightly reduced in cell culture media, but decreased one order of magnitude in highly viscous PEG1000. Toxicity assays performed on four cell lines revealed almost no toxicity for the small MNPs and a very small level of toxicity for the large MNPs, up to a concentration of 0.2 mg/mL. Cellular uptake experiments revealed that both MNPs penetrated the cells through endocytosis, in a time dependent manner and escaped the endosomes with a faster kinetics for large MNPs. Biodegradation of large MNPs inside cells involved an all-or-nothing mechanism

    Hyperthermia, Cytotoxicity, and Cellular Uptake Properties of Manganese and Zinc Ferrite Magnetic Nanoparticles Synthesized by a Polyol-Mediated Process

    No full text
    Manganese and zinc ferrite magnetic nanoparticles (MNPs) were successfully synthesizedusing the polyol method in ethylene glycol and were found to have high saturation magnetizationvalues (90–95 emu/g at 4 K) when formed by ~30-nm crystallites assembled in an ~80-nm multicorestructure. Hyperthermia data revealed a sigmoidal dependence of the specific absorption rate (SAR)on the alternating magnetic field (AMF) amplitude, with remarkable saturation SAR values in waterof ~1200 W/gFe+Mn and ~800 W/gFe+Zn for the Mn and Zn ferrites, respectively. The immobilizationof the MNPs in a solid matrix reduced the maximum SAR values by ~300 W/gFe+Mn, Zn for bothferrites. The alignment of the MNPs in a uniform static magnetic field, before their immobilizationin a solid matrix, significantly increased their heating performance. Toxicity assays performed infour cell lines revealed a lower toxicity for the Mn ferrites, while in the case of the Zn ferrites, only~50% of cells were viable upon their incubation for 24 h with 0.2 mg/mL of MNPs. Cellular uptakeexperiments revealed that both MNPs entered the cells in a time-dependent manner, as they werefound initially in endosomes and later in the cytosol. All of the studied cell lines were more sensitiveto the ZnFe2O4 MNPs

    Targeting Cell Death Mechanism Specifically in Triple Negative Breast Cancer Cell Lines.

    No full text
    Triple negative breast cancer (TNBC) is currently associated with a lack of treatment options. Arsenic derivatives have shown antitumoral activity both in vitro and in vivo; however, their mode of action is not completely understood. In this work we evaluate the response to arsenate of the double positive MCF-7 breast cancer cell line as well as of two different TNBC cell lines, Hs578T and MDA-MB-231. Multimodal experiments were conducted to this end, using functional assays and microarrays. Arsenate was found to induce cytoskeletal alteration, autophagy and apoptosis in TNBC cells, and moderate effects in MCF-7 cells. Gene expression analysis showed that the TNBC cell lines' response to arsenate was more prominent in the G2M checkpoint, autophagy and apoptosis compared to the Human Mammary Epithelial Cells (HMEC) and MCF-7 cell lines. We confirmed the downregulation of anti-apoptotic genes (MCL1, BCL2, TGFβ1 and CCND1) by qRT-PCR, and on the protein level, for TGFβ2, by ELISA. Insight into the mode of action of arsenate in TNBC cell lines it is provided, and we concluded that TNBC and non-TNBC cell lines reacted differently to arsenate treatment in this particular experimental setup. We suggest the future research of arsenate as a treatment strategy against TNBC
    corecore