5 research outputs found

    Investigation of different selenium sources and supplying methods for selenium enrichment of basil vegetable (A case study under calcareous and Non-calcareous soil systems)

    No full text
    Objective: This research was carried out to investigate the effects of Se bio-enrichment on Basil grown in calcareous and non-calcareous soil systems and also to evaluate the changes in Se concentration in the soil after harvesting. Methods: The experiment executed in two calcareous and one non-calcareous soil systems, and different Se application methods (control, soil application, seed inoculation, foliar application, and soil + foliar application) were administered. Selenobacteria, a plant growth-promoting rhizobacteria (PGPR), derived from the soil was used as a biofertilizer, compared to the other Se sources. Results: The results showed that both soil types and the methods of Se application had significant effects (P Ë‚ 0.01) on root and shoot dry weights and concentrations of P, K, Zn, Fe, and Se in both of the root and shoot. Shoot dry weight of plants treated with foliar Se was maximum in the calcareous soil. Compared to the control treatment, foliar application of Se increased shoot Se content in both calcareous and non-calcareous soils by 242% and 204%, respectively. Furthermore, the increase in shoot Se concentration in calcareous soil induced by Se application increased the concentration of other nutrients in the shoot and root. Plant growth parameters and concentrations of nutrients were significantly increased by using selenobacter inoculum. Conclusion: The application of Se-containing compounds can improve vegetable quality. Considering the daily requirement of the human body for minerals and nutrients, enriching basil with Se can play an important role in community health. Moreover, some patents have reported the effectiveness of endophyte bacteria

    Interactive effects of potassium and mycorrhizal fungi on glomalin and biochemical responses of sunflower grown in a Pb and Zn contaminated soil

    No full text
    It is well documented that sole application of potassium (K) or mycorrhizal fungi can alleviate heavy metal stress in plants. As an indicator of the efficient defense in the mycorrhizal fungi-plant system, glomalin synthesis in the rhizosphere can be determined. In this study, interactive effects of mycorrhizal fungi (MY) and K on glomalin content, heavy metal uptake and mycorrhizal properties of sunflower plants were examined with three soil K levels (0, 100, and 200 mg K kg−1 using K2SO4). The three levels of mycorrhization are: i) no mycorrhizal inoculation, ii) Rhizophagus irregularis inoculation, and iii) mixed mycorrhizal inoculum application. Joint application of potassium and mycorrhiza significantly increased the percentage of root colonization and easily extractable glomalin (EEG), showing 56% root colonization in the treatment of K100 + mixed mycorrhiza and 178 µg EEG g−1 in the treatment of K200 + mixed mycorrhiza. Joint application of MY and K significantly reduced the translocation of heavy metals to the shoot of the plants. The highest total uptake of Zn by plants per pot (2.01 mg pot −1) and Pb (0.78 mg pot −1) were found in non-mycorrhizal plants. The MY and K treatments also increased the chlorophyll content and leaf area index by 57%. This study concluded that application of potassium and mycorrhizal fungi enhanced glomalin production and increased plant resistance to heavy metal stress

    Transgenerational effects of prenatal stress of different etiology

    No full text
    corecore