9 research outputs found

    Co-invasive ectomycorrhizal fungi alter native soil fungal communities

    Full text link
    Purpose: Pinaceae (pine family) trees are native to the Northern Hemisphere and their invasion into the Southern Hemisphere is a growing problem threatening biological diversity. Pinaceae are ectomycorrhizal (ECM) and their invasions are facilitated by non-native and co-invasive ECM fungi. Nothofagaceae species (southern beeches) are dominant overstory trees across large swaths of the Southern Hemisphere and are the only widespread ECM trees native to southern South America (SSA). This observational study investigates the in situ impact of Pinaceae invasions upon native soil fungi associated with Nothofagaceae hosts in SSA. Methods: We performed soil nutrient testing and metabarcode sequencing of fungi in the rhizosphere of Nothofagus antarctica and Nothofagus dombeyi invaded by Pinaceae trees to determine whether co-invasive fungi might impact native soil fungi. Sampling transects extended from invasions into adjacent Nothofagus stands without invasive Pinaceae. Results: The fungal community composition of the Nothofagaceae rhizosphere was dominated by plant-associated Mortierellaceae OTUs in metabarcode data. Mortierellaceae OTU relative abundance was significantly reduced near invasions of Pinus contorta (Pinaceae). Invasions of Pseudotsuga menziesii (Pinaceae) and Pinus contorta were associated with reduced relative abundance of Nothofagus-associated ECM OTUS in the Nothofagus rhizosphere. Pinus contorta invasions were also associated with reduced soil organic matter, total carbon, total phosphorus, and total nitrogen. Conclusion: Further empirical study is warranted to investigate the hypothesis that Mortierellaceae and Pinaceae-specific /suillus-rhizopogon ECM fungi compete for nutrients bound in soil organic matter. Such competition may have potential long-term legacy effects upon post-invasion restoration efforts and implications for Pinaceae invasions globally.Fil: Mujic, Alija Bajro. California State University; Estados UnidosFil: Policelli, Nahuel. Boston University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Nuñez, Martin Andres. University Of Houston; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Truong, Camille. University of Florida; Estados UnidosFil: Smith, Matthew E.. University of Florida; Estados Unido

    Unveiling new sequestrate Cortinarius species from northern Patagonian Nothofagaceae forests based on molecular and morphological data

    Full text link
    Because of systematic sampling campaigns in the northern Patagonian Nothofagaceae forests of Argentina, several specimens of sequestrate fungi were collected. Some of those collections showed phylogenetic affinities and morphological similarities to members of the formerly recognized sequestrate genus Thaxterogaster, currently a synonym of Cortinarius on the basis of molecular data. Comparisons of macro- and micromorphological features and sequences of nuc rDNA internal transcribed spacer (ITS) regions have revealed that these collections belong to formerly undescribed species. The sequences of the four new taxa presented here, Cortinarius flavopurpureus, C. translucidus, C. nahuelhuapensis, and C. infrequens, were combined into a data set including additional sequences generated from herbarium collections and retrieved from public gene databases and analyzed by maximum likelihood and Bayesian inference methods. The four new species were resolved as distinct clades with strong support; at the same time, they showed unique morphological characteristics (hypogeous to subhypogeous habit, complete gasteromycetation, and spore shape and ornamentation) that separate them from previously described Cortinarius species. In addition, several undescribed and/or not previously sequenced species from these forests were detected through phylogenetic analysis of ectomycorrhizal root tip sequences. A key of characters to identify the sequestrate Cortinarius from Patagonia is provided.Fil: Pastor, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Chiapella, Jorge Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Kuhar, José Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Mujic, Alija Bajro. University of Florida; Estados UnidosFil: Crespo, Esteban María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnol.conicet - San Luis. Unidad de Adm.territorial; ArgentinaFil: Nouhra, Eduardo Ramon. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentin

    Comparative Genomics of the Ectomycorrhizal Sister Species Rhizopogon vinicolor and Rhizopogon vesiculosus (Basidiomycota: Boletales) Reveals a Divergence of the Mating Type B Locus.

    Full text link
    Divergence of breeding system plays an important role in fungal speciation. Ectomycorrhizal fungi, however, pose a challenge for the study of reproductive biology because most cannot be mated under laboratory conditions. To overcome this barrier, we sequenced the draft genomes of the ectomycorrhizal sister species Rhizopogon vinicolor Smith and Zeller and R. vesiculosus Smith and Zeller (Basidiomycota, Boletales)-the first genomes available for Basidiomycota truffles-and characterized gene content and organization surrounding their mating type loci. Both species possess a pair of homeodomain transcription factor homologs at the mating type A-locus as well as pheromone receptor and pheromone precursor homologs at the mating type B-locus. Comparison of Rhizopogon genomes with genomes from Boletales, Agaricales, and Polyporales revealed synteny of the A-locus region within Boletales, but several genomic rearrangements across orders. Our findings suggest correlation between gene content at the B-locus region and breeding system in Boletales with tetrapolar species possessing more diverse gene content than bipolar species. Rhizopogon vinicolor possesses a greater number of B-locus pheromone receptor and precursor genes than R. vesiculosus, as well as a pair of isoprenyl cysteine methyltransferase genes flanking the B-locus compared to a single copy in R. vesiculosus Examination of dikaryotic single nucleotide polymorphisms within genomes revealed greater heterozygosity in R. vinicolor, consistent with increased rates of outcrossing. Both species possess the components of a heterothallic breeding system with R. vinicolor possessing a B-locus region structure consistent with tetrapolar Boletales and R. vesiculosus possessing a B-locus region structure intermediate between bipolar and tetrapolar Boletales

    Comparative Genomics of the Ectomycorrhizal Sister Species Rhizopogon vinicolor and Rhizopogon vesiculosus (Basidiomycota: Boletales) Reveals a Divergence of the Mating Type B Locus.

    Full text link
    Divergence of breeding system plays an important role in fungal speciation. Ectomycorrhizal fungi, however, pose a challenge for the study of reproductive biology because most cannot be mated under laboratory conditions. To overcome this barrier, we sequenced the draft genomes of the ectomycorrhizal sister species Rhizopogon vinicolor Smith and Zeller and R. vesiculosus Smith and Zeller (Basidiomycota, Boletales)-the first genomes available for Basidiomycota truffles-and characterized gene content and organization surrounding their mating type loci. Both species possess a pair of homeodomain transcription factor homologs at the mating type A-locus as well as pheromone receptor and pheromone precursor homologs at the mating type B-locus. Comparison of Rhizopogon genomes with genomes from Boletales, Agaricales, and Polyporales revealed synteny of the A-locus region within Boletales, but several genomic rearrangements across orders. Our findings suggest correlation between gene content at the B-locus region and breeding system in Boletales with tetrapolar species possessing more diverse gene content than bipolar species. Rhizopogon vinicolor possesses a greater number of B-locus pheromone receptor and precursor genes than R. vesiculosus, as well as a pair of isoprenyl cysteine methyltransferase genes flanking the B-locus compared to a single copy in R. vesiculosus Examination of dikaryotic single nucleotide polymorphisms within genomes revealed greater heterozygosity in R. vinicolor, consistent with increased rates of outcrossing. Both species possess the components of a heterothallic breeding system with R. vinicolor possessing a B-locus region structure consistent with tetrapolar Boletales and R. vesiculosus possessing a B-locus region structure intermediate between bipolar and tetrapolar Boletales
    corecore