198 research outputs found
Superposition approach for description of electrical conductivity in sheared MWNT/polycarbonate melts
The theoretical description of electrical properties of polymer melts, filled with attractively interacting conductive particles, represents a great challenge. Such filler particles tend to build a network-like structure which is very fragile and can be easily broken in a shear flow with shear rates of about 1 s–1. In this study, measured shear-induced changes in electrical conductivity of polymer composites are described using a superposition approach, in which the filler particles are separated into a highly conductive percolating and low conductive non-percolating phases. The latter is represented by separated well-dispersed filler particles. It is assumed that these phases determine the effective electrical properties of composites through a type of mixing rule involving the phase volume fractions. The conductivity of the percolating phase is described with the help of classical percolation theory, while the conductivity of non-percolating phase is given by the matrix conductivity enhanced by the presence of separate filler particles. The percolation theory is coupled with a kinetic equation for a scalar structural parameter which describes the current state of filler network under particular flow conditions. The superposition approach is applied to transient shear experiments carried out on polycarbonate composites filled with multi-wall carbon nanotubes
Establishment, morphology and properties of carbon nanotube networks in polymer melts
As for nanofillers in general, the properties of carbon nanotube (CNT) -polymer composites depend strongly on the filler arrangement and the structure of the filler network. This article reviews our actual understanding of the relation between processing conditions, state of CNT dispersion and structure of the filler network on the one hand, and the resulting electrical, melt rheological and mechanical properties, on the other hand. The as-produced rather compact agglomerates of CNTs (initial agglomerates, >1 μm), whose structure can vary for different tube manufacturers, synthesis and/or purification conditions, have first to be well dispersed in the polymer matrix during the mixing step, before they can be arranged to a filler network with defined physical properties by forming secondary agglomerates. Influencing factors on the melt dispersion of initial agglomerates of multi-walled CNTs into individualized tubes are discussed in context of dispersion mechanisms, namely the melt infiltration into initial agglomerates, agglomerate rupture and nanotube erosion from agglomerate surfaces. The hierarchical morphology of filler arrangement resulting from secondary agglomeration processes has been found to be due to a competition of build-up and destruction for the actual melt temperature and the given external flow field forces. Related experimental results from in-line and laboratory experiments and a model approach for description of shear-induced properties are presented
Dynamic probe of the interface in lamellar forming non-linear block copolymers of the (BA) 3 B and (BA) 3 B(AB) 3 type. A dielectric spectroscopy study
Abstract Dielectric spectroscopy is employed in lamellar forming non-linear block copolymers of the type (BA) 3 B and (BA) 3 B(AB) 3 based on polyisoprene (A) and polystyrene (B), at temperatures well below the order-to-disorder transition temperature and below the glass transition temperature of the hard phase (polystyrene). We show here that dielectric spectroscopy can be used as a tool to probe the interface in ordered block copolymers with a basic triblock unit. Our estimate of the interfacial width is based on the mobility of the junction points at the interface and compares favorably with the estimated thickness from thermodynamics.
Frequency Dispersion of Sound Propagation in Rouse Polymer Melts via Generalized Dynamic Random Phase Approximation
An extended generalization of the dynamic random phase approximation (DRPA)
for L-component polymer systems is presented. Unlike the original version of
the DRPA, which relates the (LxL) matrices of the collective density-density
time correlation fumctions and the corresponding susceptibilities of polymer
concentrated systems to those of the tracer macromolecules and so-called broken
links system (BLS), our generalized DRPA solves this problem for (5xL)x(5xL)
matrices of the coupled susceptibilities and time correlation functions of the
component number, kinetic energy and flux densities. The presented technique is
used to study propagation of sound and dynamic form-factor in disentangled
(Rouse) monodisperse homopolymer melt. The calculated sound velocity and
absorption coefficient reveal substantial frequency dispersion. The relaxation
time is found to be N times less than the Rouse time (N is the degree of
polymerization), which evidences strong dynamic screening because of interchain
interaction. We discuss also some peculiarities of the Brillouin scattering in
polymer melts. Besides, a new convenient expression for the dynamic structural
function of the Rouse chain in (q,p)-representation is found.Comment: 37 pages, 2 appendices, 48 references, 1 figur
Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star cluster
High resolution observations with the NIR adaptive optics integral field
spectrograph SINFONI at the VLT proved the existence of massive and young
nuclear star clusters in the centres of a sample of Seyfert galaxies. With the
help of three-dimensional high resolution hydrodynamical simulations with the
Pluto code, we follow the evolution of such clusters, focusing on stellar mass
loss. This leads to clumpy or filamentary inflow of gas on large scales (tens
of parsec), whereas a turbulent and very dense disc builds up on the parsec
scale. In order to capture the relevant physics in the inner region, we treat
this disc separately by viscously evolving the radial surface density
distribution. This enables us to link the tens of parsec scale region
(accessible via SINFONI observations) to the (sub-)parsec scale region
(observable with the MIDI instrument and via water maser emission). In this
work, we concentrate on the effects of a parametrised turbulent viscosity to
generate angular momentum and mass transfer in the disc and additionally take
star formation into account. Input parameters are constrained by observations
of the nearby Seyfert 2 galaxy NGC 1068. At the current age of its nuclear
starburst of 250 Myr, our simulations yield disc sizes of the order of 0.8 to
0.9 pc, gas masses of 1.0e6 solar masses and mass transfer rates of 0.025 solar
masses per year through the inner rim of the disc. This shows that our large
scale torus model is able to approximately account for the disc size as
inferred from interferometric observations in the mid-infrared and compares
well to the extent and mass of a rotating disc structure as inferred from water
maser observations. Several other observational constraints are discussed as
well.Comment: 13 pages, 11 figures, accepted for publication in MNRAS, updated
author list and reference
Star Formation and Dynamics in the Galactic Centre
The centre of our Galaxy is one of the most studied and yet enigmatic places
in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre
(GC) is the ideal environment to study the extreme processes that take place in
the vicinity of a supermassive black hole (SMBH). Despite the hostile
environment, several tens of early-type stars populate the central parsec of
our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and
inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the
SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The
formation of such early-type stars has been a puzzle for a long time: molecular
clouds should be tidally disrupted by the SMBH before they can fragment into
stars. We review the main scenarios proposed to explain the formation and the
dynamical evolution of the early-type stars in the GC. In particular, we
discuss the most popular in situ scenarios (accretion disc fragmentation and
molecular cloud disruption) and migration scenarios (star cluster inspiral and
Hills mechanism). We focus on the most pressing challenges that must be faced
to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in
expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A.,
'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
The Influence of Dense Gas Rings on the Dynamics of a Stellar Disk in the Galactic Center
The Galactic center hosts several hundred early-type stars, about 20% of which lie in the so-called clockwise disk, while the remaining 80% do not belong to any disks. The circumnuclear ring (CNR), a ring of molecular gas that orbits the supermassive black hole (SMBH) with a radius of similar to 1.5 pc, has been claimed to induce precession and Kozai-Lidov oscillations onto the orbits of stars in the innermost parsec. We investigate the perturbations exerted by a gas ring on a nearly Keplerian stellar disk orbiting an SMBH by means of combined direct N-body and smoothed particle hydrodynamics simulations. We simulate the formation of gas rings through the infall and disruption of a molecular gas cloud, adopting different inclinations between the infalling gas cloud and the stellar disk. We find that a CNR-like ring is not efficient in affecting the stellar disk on a timescale of 3 Myr. In contrast, a gas ring in the innermost 0.5 pc induces precession of the longitude of the ascending node Omega, which significantly affects the stellar disk inclination. Furthermore, the combined effect of two-body relaxation and Omega-precession drives the stellar disk dismembering, displacing the stars from the disk. The impact of precession on the star orbits is stronger when the stellar disk and the inner gas ring are nearly coplanar. We speculate that the warm gas in the inner cavity might have played a major role in the evolution of the clockwise disk
Efficient Dielectrophoretic Patterning of Embryonic Stem Cells in Energy Landscapes Defined by Hydrogel Geometries
In this study, we have developed an integrated microfluidic platform for actively patterning mammalian cells, where poly(ethylene glycol) (PEG) hydrogels play two important roles as a non-fouling layer and a dielectric structure. The developed system has an embedded array of PEG microwells fabricated on a planar indium tin oxide (ITO) electrode. Due to its dielectric properties, the PEG microwells define electrical energy landscapes, effectively forming positive dielectrophoresis (DEP) traps in a low-conductivity environment. Distribution of DEP forces on a model cell was first estimated by computationally solving quasi-electrostatic Maxwell’s equations, followed by an experimental demonstration of cell and particle patterning without an external flow. Furthermore, efficient patterning of mouse embryonic stem (mES) cells was successfully achieved in combination with an external flow. With a seeding density of 107 cells/mL and a flow rate of 3 μL/min, trapping of cells in the microwells was completed in tens of seconds after initiation of the DEP operation. Captured cells subsequently formed viable and homogeneous monolayer patterns. This simple approach could provide an efficient strategy for fabricating various cell microarrays for applications such as cell-based biosensors, drug discovery, and cell microenvironment studies
- …