285 research outputs found
Simulating the impact of the Smith Cloud
We investigate the future evolution of the Smith Cloud by performing
hydrodynamical simulations of the cloud impact onto the gaseous Milky Way
Galactic disk. We assume a local origin for the cloud and thus do not include a
dark matter component to stabilize it. Our main focus is the cloud's influence
on the local and global star formation rate (SFR) of the Galaxy and whether or
not it leads to an observable event in the far future. Our model assumes two
extremes for the mass of the Smith Cloud, an upper mass limit of 10
M and a lower mass limit of 10 M, compared to the
observational value of a few 10 M. In addition, we also make the
conservative assumption that the entirety of the cloud mass of the extended
Smith Cloud is concentrated within the tip of the cloud. We find that the
impact of the low-mass cloud produces no noticeable change in neither the
global SFR nor the local SFR at the cloud impact site within the galactic disk.
For the high-mass cloud we find a short-term (roughly 5 Myr) increase of the
global SFR of up to 1 M yr, which nearly doubles the normal
Milky Way SFR. This highly localized starburst should be observable.Comment: 14 pages, 5 figure
COLLECTION AND PROCESSING OF WASTES FROM RUSSIAN NORTHERN FLEET SHIPS
ABSTRACT This paper discusses the joint activities between technical experts from Russia, Norway, and the United States regarding the control of Russian Naval ship waste discharges in the Arctic. The initial effort considered the design and construction of a vessel for collecting and processing waste from over 200 Russian Navy ships in the Barents Sea, as part of the Arctic Military Environmental Cooperation (AMEC) Program. The Russian waste-vessel project, officially entitled AMEC Project 2.2-0, focused on identifying waste streams and the amounts generated and the associated discharge requirements, evaluating possible existing technologies for collection and treatment, and developing a conceptual design for the vessel. The types of wastes subject to treatment by the vessel included oily mixtures, sewage (blackwater), domestic water (graywater), and garbage (solid and food waste). All discharges had to adhere to the stringent discharge water quality limits established by Russian Federation regulations. The United States, Russia, and Norway exchanged information on national waste-treatment technologies. These were then evaluated for suitability aboard the vessel. Based on the preferred technologies, a notional concept of the waste-treatment-and-collection vessel was completed. The design and outfitting of a vessel was deferred, but a follow-on effort will be a demonstration of a Russian oily waste-treatment system aboard a Russian Federation vessel in the Northern Fleet
Establishment, morphology and properties of carbon nanotube networks in polymer melts
As for nanofillers in general, the properties of carbon nanotube (CNT) -polymer composites depend strongly on the filler arrangement and the structure of the filler network. This article reviews our actual understanding of the relation between processing conditions, state of CNT dispersion and structure of the filler network on the one hand, and the resulting electrical, melt rheological and mechanical properties, on the other hand. The as-produced rather compact agglomerates of CNTs (initial agglomerates, >1 ÎŒm), whose structure can vary for different tube manufacturers, synthesis and/or purification conditions, have first to be well dispersed in the polymer matrix during the mixing step, before they can be arranged to a filler network with defined physical properties by forming secondary agglomerates. Influencing factors on the melt dispersion of initial agglomerates of multi-walled CNTs into individualized tubes are discussed in context of dispersion mechanisms, namely the melt infiltration into initial agglomerates, agglomerate rupture and nanotube erosion from agglomerate surfaces. The hierarchical morphology of filler arrangement resulting from secondary agglomeration processes has been found to be due to a competition of build-up and destruction for the actual melt temperature and the given external flow field forces. Related experimental results from in-line and laboratory experiments and a model approach for description of shear-induced properties are presented
Simulations of the Origin and Fate of the Galactic Center Cloud G2
We investigate the origin and fate of the recently discovered gas cloud G2
close to the Galactic Center. Our hydrodynamical simulations focussing on the
dynamical evolution of the cloud in combination with currently available
observations favor two scenarios: a Compact Cloud which started around the year
1995 and a Spherical Shell of gas, with an apocenter distance within the
disk(s) of young stars and a radius of a few times the size of the Compact
Cloud. The former is able to explain the detected signal of G2 in the
position-velocity diagram of the Br gamma emission of the year 2008.5 and
2011.5 data. The latter can account for both, G2's signal as well as the
fainter extended tail-like structure G2t seen at larger distances from the
black hole and smaller velocities. In contrast, gas stripped from a compact
cloud by hydrodynamical interactions is not able to explain the location of the
detected G2t emission in the observed position-velocity diagrams. This favors
the Spherical Shell Scenario and might be a severe problem for the Compact
Cloud as well as the so-called Compact Source Scenario. From these first
idealized simulations we expect a roughly constant feeding of the supermassive
black hole through a nozzle-like structure over a long period, starting shortly
after the closest approach in 2013.51 for the Compact Cloud. If the matter
accretes in the hot accretion mode, we do not expect a significant boost of the
current activity of Sgr A* for the Compact Cloud model, but a boost of the
average infrared and X-ray luminosity by roughly a factor of 80 for the
Spherical Shell scenario with order of magnitude variations on a timescale of a
few months. The near-future evolution of the cloud will be a sensitive probe of
the conditions of the gas distribution in the milli-parsec environment of the
massive black hole in the Galactic Center.Comment: 16 pages, 16 figures, accepted by Ap
Alterations in regulatory T cells and immune checkpoint molecules in pancreatic cancer patients receiving FOLFIRINOX or gemcitabine plus nab-paclitaxel
PURPOSE This pilot study aimed on generating insight on alterations in circulating immune cells during the use of FOLFIRINOX and gemcitabine/nab-paclitaxel in pancreatic ductal adenocarcinoma (PDAC). PATIENTS AND METHODS Peripheral blood mononuclear cells were isolated before and 30~days after initiation of chemotherapy from 20 patients with advanced PDAC. Regulatory T cells (FoxP3+) and immune checkpoints (PD-1 and TIM-3) were analyzed by flow cytometry and immunological changes were correlated with clinical outcome. RESULTS Heterogeneous changes during chemotherapy were observed in circulating T-cell subpopulations with a pronounced effect on PD-1+ CD4+/CD8+ T cells. An increase in FoxP3+ or PD-1+ T cells had no significant effect on survival. An increase in TIM3+/CD8+ (but not TIM3+/CD4+) T cells was associated with a significant inferior outcome: median progression-free survival in the subgroup with an increase of TIM-3+/CD8+ T cells was 6.0 compared to 14.0~months in patients with a decrease/no change (p = 0.026); corresponding median overall survival was 13.0 and 20.0~months (p = 0.011), respectively. CONCLUSIONS Chemotherapy with FOLFIRNOX or gemcitabine/nab-paclitaxel induces variable changes in circulating T-cell populations that may provide prognostic information in PDAC
Physics of the Galactic Center Cloud G2, on its Way towards the Super-Massive Black Hole
The origin, structure and evolution of the small gas cloud, G2, is
investigated, that is on an orbit almost straight into the Galactic central
supermassive black hole (SMBH). G2 is a sensitive probe of the hot accretion
zone of Sgr A*, requiring gas temperatures and densities that agree well with
models of captured shock-heated stellar winds. Its mass is equal to the
critical mass below which cold clumps would be destroyed quickly by
evaporation. Its mass is also constrained by the fact that at apocenter its
sound crossing timescale was equal to its orbital timescale. Our numerical
simulations show that the observed structure and evolution of G2 can be well
reproduced if it formed in pressure equilibrium with the surrounding in 1995 at
a distance from the SMBH of 7.6e16 cm. If the cloud would have formed at
apocenter in the 'clockwise' stellar disk as expected from its orbit, it would
be torn into a very elongated spaghetti-like filament by 2011 which is not
observed. This problem can be solved if G2 is the head of a larger, shell-like
structure that formed at apocenter. Our numerical simulations show that this
scenario explains not only G2's observed kinematical and geometrical properties
but also the Br_gamma observations of a low surface brightness gas tail that
trails the cloud. In 2013, while passing the SMBH G2 will break up into a
string of droplets that within the next 30 years mix with the surrounding hot
gas and trigger cycles of AGN activity.Comment: 22 pages, 13 figures, submitted to Ap
Measurement of the electronâhole pair creation energy in Al0.52In0.48P using X-ray radiation
The average energy consumed in the generation of an electronâhole pair (Δ AlInP ) in Al 0.52 In 0.48 P was experimentally measured across the temperature range â20 °C to 100 â C, using a custom AlInP X-ray-photodiode, an 55 Fe radioisotope X-ray source, and custom low-noise charge-sensitive preamplifier electronics. Δ AlInP was found to linearly decrease with increasing temperature according to the equation Δ AlInP = (-0.0033 eV/K ± 0.0003 eV/K)T + (6.31 eV ± 0.10 eV). At room temperature (20 °C), Δ AlInP = 5.34 eV ± 0.07 eV
Star Formation and Dynamics in the Galactic Centre
The centre of our Galaxy is one of the most studied and yet enigmatic places
in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre
(GC) is the ideal environment to study the extreme processes that take place in
the vicinity of a supermassive black hole (SMBH). Despite the hostile
environment, several tens of early-type stars populate the central parsec of
our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and
inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the
SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The
formation of such early-type stars has been a puzzle for a long time: molecular
clouds should be tidally disrupted by the SMBH before they can fragment into
stars. We review the main scenarios proposed to explain the formation and the
dynamical evolution of the early-type stars in the GC. In particular, we
discuss the most popular in situ scenarios (accretion disc fragmentation and
molecular cloud disruption) and migration scenarios (star cluster inspiral and
Hills mechanism). We focus on the most pressing challenges that must be faced
to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in
expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A.,
'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
- âŠ