12 research outputs found

    ВлияниС Π°ΠΊΡ‚ΠΈΠ²Π°Ρ‚ΠΎΡ€Π° Π°Π΄Π΅Π½ΠΈΠ»Π°Ρ‚Ρ†ΠΈΠΊΠ»Π°Π· Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ цитоскСлСта ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π² Ρ…ΠΎΠ΄Π΅ Π±Π°Ρ€ΡŒΠ΅Ρ€Π½ΠΎΠΉ дисфункции эндотСлия, Π²Ρ‹Π·Π²Π°Π½Π½ΠΎΠΉ воздСйствиСм Ρ‚Ρ€ΠΎΠΌΠ±ΠΈΠ½Π°

    Get PDF
    This work executed on a model of endothelial monolayer in vitro, is devoted to the study of mechanisms leading to endothelial barrier dysfunction. The dysfunction inductor, thrombin, acts on endothelial cells through a specific receptor, triggering cascades of intracellular reactions (including cytoskeletal reorganization) resulting to increased of endothelial permeability. Thrombin-receptor interaction leads to dissociation of heterotrimeric G-protein subunits (Gi, Gq and G12/13), each of which is potentially capable to handle one or more possible ways of dysfunction development. In the present study we analyzed the role of Gi protein in the occurrence of cytoskeletal disturbances that lead to barrier dysfunction. According to our results, it can be assumed that the activity of Gi protein does not directly affect on the endothelial barrier properties.Π Π°Π±ΠΎΡ‚Π°, выполнСнная Π½Π° ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ пласта in vitro, посвящСна исслСдованию ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ², приводящих ΠΊ Π±Π°Ρ€ΡŒΠ΅Ρ€Π½ΠΎΠΉ дисфункции эндотСлия. Π’ качСствС ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΎΡ€Π° дисфункции использовался Ρ‚Ρ€ΠΎΠΌΠ±ΠΈΠ½. Π’Ρ€ΠΎΠΌΠ±ΠΈΠ½ дСйствуСт Π½Π° эндотСлиоциты Ρ‡Π΅Ρ€Π΅Π· спСцифичСский Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€, запуская каскады Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ, приводящих ΠΊ росту проницаСмости ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π±Π°Ρ€ΡŒΠ΅Ρ€Π°, сопровоТдаСмому ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ фосфорилирования Π»Π΅Π³ΠΊΠΈΡ… Ρ†Π΅ΠΏΠ΅ΠΉ ΠΌΠΈΠΎΠ·ΠΈΠ½Π° ΠΈ пСрСстройкой цитоскСлСта ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ (Π΄Π΅ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ пСрифСричСских ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… стрСсс-Ρ„ΠΈΠ±Ρ€ΠΈΠ»Π»). ВзаимодСйствиС Ρ‚Ρ€ΠΎΠΌΠ±ΠΈΠ½Π° с Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ диссоциации ΡΡƒΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ† Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ‚Ρ€ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… G-Π±Π΅Π»ΠΊΠΎΠ² сСмСйств Gi, Gq ΠΈ G12/13, каТдая ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ способна Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ΄ΠΈΠ½ ΠΈΠ»ΠΈ нСсколько Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ развития дисфункции. Π’ настоящСм исслСдовании Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Ρ€ΠΎΠ»ΡŒ Gi Π±Π΅Π»ΠΊΠ° Π² Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΠΈ цитоскСлСтных Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ, приводящих ΠΊ Π±Π°Ρ€ΡŒΠ΅Ρ€Π½ΠΎΠΉ дисфункции. Активированный Gi Π±Π΅Π»ΠΎΠΊ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ Π²Π½ΡƒΡ‚Ρ€ΠΈΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ΅Π΄ΠΈΠ°Ρ‚ΠΎΡ€Π° - цикличСского АМЀ ΠΈ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΠ΅Ρ‚ ΠΏΡ€ΠΎΠ½ΠΈΡ†Π°Π΅ΠΌΠΎΡΡ‚ΡŒ ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΊΠ°Π½Π°Π»ΠΎΠ². ДСйствиС Π°ΠΊΡ‚ΠΈΠ²Π°Ρ‚ΠΎΡ€Π° Π°Π΄Π΅Π½ΠΈΠ»Π°Ρ‚Ρ†ΠΈΠΊΠ»Π°Π· форсколина ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ Ρ†ΠΠœΠ€ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠ΅ Π½Π΅ влияСт Π½Π° измСнСния Π°ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ цитоскСлСта ΠΈ ΠΌΠΈΠΊΡ€ΠΎΡ‚Ρ€ΡƒΠ±ΠΎΡ‡Π΅ΠΊ, Π²Ρ‹Π·Ρ‹Π²Π°Π΅ΠΌΡ‹Π΅ Ρ‚Ρ€ΠΎΠΌΠ±ΠΈΠ½ΠΎΠΌ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π½ΠΈΠ·ΠΊΠΈΠΉ ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ Ρ†ΠΠœΠ€ Π½Π΅ являСтся ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ условиСм для измСнСния цитоскСлСта ΠΏΠΎΠ΄ дСйствиСм Ρ‚Ρ€ΠΎΠΌΠ±ΠΈΠ½Π° ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Gi Π±Π΅Π»ΠΊΠ° Π½Π°ΠΏΡ€ΡΠΌΡƒΡŽ Π½Π΅ влияСт Π½Π° Π±Π°Ρ€ΡŒΠ΅Ρ€Π½Ρ‹Π΅ свойства эндотСлия

    The functional role of the microtubule/microfi lament cytoskeleton in the regulation of pulmonary vascular endothelial barrier

    No full text
    The endothelial cells (EC) lining the vessels are in close contact with each other, rendering the vascular wall into a tight barrier, which control such diverse processes as vascular tone, homeostasis, adhesion of platelets and leukocytes to the vascular wall and permeability of vascular wall for cells and fluids (Bazzoni and Dejana 2004, Dudek and Garcia 2001, Komarova and Malik 2010, Ware and Matthay 2000). Lung endothelium regulates movement of fluid, macromolecules, and leukocytes into the interstitium and subsequently into the alveolar air spaces. The integrity of the pulmonary EC monolayer, therefore, is a critical requirement for preservation of pulmonary function. This barrier is dynamic and highly susceptible to the regulation, by various stimuli, of physiological and pathological origin. Any breach in the EC barrier results in leakage of fluid from the lumen of the vessels into the interstitial tissue and/or alveolar lumen, severely impairing gas exchange. Disruption of endothelial barrier occurs during inflammatory disease states such as acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS), which remains a major cause of morbidity and mortality with an overall mortality rate of 30-40% (Ware and Matthay 2000), results in the uncontrolled movement of fluid and macromolecules into the interstitium and pulmonary air spaces causing pulmonary edema (Ermert et al. 1995). Data of literature have proved that normal functioning of the endothelial barrier is provided by the balance between contracting and stretching forces generated by EC cytoskeleton (Bogatcheva and Verin 2008, Dudek and Garcia 2001, Komarova et al. 2007). In this review, we will analyze the cytoskeletal elements whose reorganization affects endothelial permeability, and emphasize the role of microtubules/microfilament crosstalk in lung EC barrier regulation. Β© 2014 by Taylor & Francis Group, LLC

    The leading role of microtubules in endothelial barrier dysfunction: Disassembly of peripheral microtubules leaves behind the cytoskeletal reorganization

    No full text
    Disturbance of the endothelial barrier is characterized by dramatic cytoskeleton reorganization, activation of actomyosin contraction and, finally, leads to intercellular gap formation. Here we demonstrate that the edemagenic agent, thrombin, causes a rapid increase in the human pulmonary artery endothelial cell (EC) barrier permeability accompanied by fast decreasing in the peripheral microtubules quantity and reorganization of the microtubule system in the internal cytoplasm of the EC within 5 min of the treatment. The actin stress-fibers formation occurs gradually and the maximal effect is observed relatively later, 30 min of the thrombin treatment. Thus, microtubules reaction develops faster than the reorganization of the actin filaments system responsible for the subsequent changes of the cell shape during barrier dysfunction development. Direct microtubules depolymerization by nocodazole initiates the cascade of barrier dysfunction reactions. Nocodazole-induced barrier disruption is connected directly with the degree of peripheral microtubules depolymerization. Short-term loss of endothelial barrier function occurs at the minimal destruction of peripheral microtubules, when actin filament system is still intact. Specifically, we demonstrate that the EC microtubule dynamics examined by time-lapse imaging of EB3-GFP comets movement has changed under these conditions: microtubule plus ends growth rate significantly decreased near the cell periphery. The microtubules, apparently, are the first target in the circuit of reactions leading to the pulmonary EC barrier compromise. Our results show that dynamic microtubules play an essential role in the barrier function in vitro; peripheral microtubules depolymerization is necessary and sufficient condition for initiation of endothelial barrier dysfunction. J. Cell. Biochem. 114: 2258-2272, 2013. Β© 2013 Wiley Periodicals, Inc. Copyright Β© 2013 Wiley Periodicals, Inc

    The leading role of microtubules in endothelial barrier dysfunction: Disassembly of peripheral microtubules leaves behind the cytoskeletal reorganization

    No full text
    Disturbance of the endothelial barrier is characterized by dramatic cytoskeleton reorganization, activation of actomyosin contraction and, finally, leads to intercellular gap formation. Here we demonstrate that the edemagenic agent, thrombin, causes a rapid increase in the human pulmonary artery endothelial cell (EC) barrier permeability accompanied by fast decreasing in the peripheral microtubules quantity and reorganization of the microtubule system in the internal cytoplasm of the EC within 5 min of the treatment. The actin stress-fibers formation occurs gradually and the maximal effect is observed relatively later, 30 min of the thrombin treatment. Thus, microtubules reaction develops faster than the reorganization of the actin filaments system responsible for the subsequent changes of the cell shape during barrier dysfunction development. Direct microtubules depolymerization by nocodazole initiates the cascade of barrier dysfunction reactions. Nocodazole-induced barrier disruption is connected directly with the degree of peripheral microtubules depolymerization. Short-term loss of endothelial barrier function occurs at the minimal destruction of peripheral microtubules, when actin filament system is still intact. Specifically, we demonstrate that the EC microtubule dynamics examined by time-lapse imaging of EB3-GFP comets movement has changed under these conditions: microtubule plus ends growth rate significantly decreased near the cell periphery. The microtubules, apparently, are the first target in the circuit of reactions leading to the pulmonary EC barrier compromise. Our results show that dynamic microtubules play an essential role in the barrier function in vitro; peripheral microtubules depolymerization is necessary and sufficient condition for initiation of endothelial barrier dysfunction. J. Cell. Biochem. 114: 2258-2272, 2013. Β© 2013 Wiley Periodicals, Inc. Copyright Β© 2013 Wiley Periodicals, Inc
    corecore