12 research outputs found

    On thermalization in Kitaev's 2D model

    Full text link
    The thermalization process of the 2D Kitaev model is studied within the Markovian weak coupling approximation. It is shown that its largest relaxation time is bounded from above by a constant independent of the system size and proportional to exp(2Δ/kT)\exp(2\Delta/kT) where Δ\Delta is an energy gap over the 4-fold degenerate ground state. This means that the 2D Kitaev model is not an example of a memory, neither quantum nor classical.Comment: 26 page

    Quantum Measurements and Gates by Code Deformation

    Full text link
    The usual scenario in fault tolerant quantum computation involves certain amount of qubits encoded in each code block, transversal operations between them and destructive measurements of ancillary code blocks. We introduce a new approach in which a single code layer is used for the entire computation, in particular a surface code. Qubits can be created, manipulated and non-destructively measured by code deformations that amount to `cut and paste' operations in the surface. All the interactions between qubits remain purely local in a two-dimensional setting.Comment: Revtex4, 6 figure

    Robustness of quantum Markov chains

    Full text link
    If the conditional information of a classical probability distribution of three random variables is zero, then it obeys a Markov chain condition. If the conditional information is close to zero, then it is known that the distance (minimum relative entropy) of the distribution to the nearest Markov chain distribution is precisely the conditional information. We prove here that this simple situation does not obtain for quantum conditional information. We show that for tri-partite quantum states the quantum conditional information is always a lower bound for the minimum relative entropy distance to a quantum Markov chain state, but the distance can be much greater; indeed the two quantities can be of different asymptotic order and may even differ by a dimensional factor.Comment: 14 pages, no figures; not for the feeble-minde

    Topological Color Codes and Two-Body Quantum Lattice Hamiltonians

    Get PDF
    Topological color codes are among the stabilizer codes with remarkable properties from quantum information perspective. In this paper we construct a four-valent lattice, the so called ruby lattice, governed by a 2-body Hamiltonian. In a particular regime of coupling constants, degenerate perturbation theory implies that the low energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. The gauge symmetry Z2×Z2\mathbf{Z}_{2}\times\mathbf{Z}_{2} of color code could already be realized by identifying three distinct plaquette operators on the lattice. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other giving rise to exact topological degeneracy of the model. Connection to 2-colexes can be established at the non-perturbative level. The particular structure of the 2-body Hamiltonian provides a fruitful interpretation in terms of mapping to bosons coupled to effective spins. We show that high energy excitations of the model have fermionic statistics. They form three families of high energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. Also, we use Jordan-Wigner transformation in order to test the integrability of the model via introducing of Majorana fermions. The four-valent structure of the lattice prevents to reduce the fermionized Hamiltonian into a quadratic form due to interacting gauge fields. We also propose another construction for 2-body Hamiltonian based on the connection between color codes and cluster states. We discuss this latter approach along the construction based on the ruby lattice.Comment: 56 pages, 16 figures, published version
    corecore