15 research outputs found

    Silver Nanoparticles Effects on In Vitro Germination, Growth, and Biochemical Activity of Tomato, Radish, and Kale Seedlings

    No full text
    The interactions between nanoparticles and plant cells are still not sufficiently understood, and studies related to this subject are of scientific and practical importance. Silver nanoparticles (AgNPs) are one of the most commonly produced and used nanomaterials. This study aimed to investigate the influence of AgNPs applied at the concentrations of 0, 50, and 100 mg·L−1 during the process of in vitro germination as well as the biometric and biochemical parameters of developed seedlings in three vegetable species: Solanum lycopersicum L. ‘Poranek’, Raphanus sativus L. var. sativus ‘Ramona’, and Brassica oleracea var. sabellica ‘Nero di Toscana’. The application of AgNPs did not affect the germination efficiency; however, diverse results were reported for the growth and biochemical activity of the seedlings, depending on the species tested and the AgNPs concentration. Tomato seedlings treated with nanoparticles, particularly at 100 mg·L−1, had shorter shoots with lower fresh and dry weights and produced roots with lower fresh weight. Simultaneously, at the biochemical level, a decrease in the content of chlorophylls and carotenoids and an increase in the anthocyanins content and guaiacol peroxidase (GPOX) activity were reported. AgNPs-treated radish plants had shorter shoots of higher fresh and dry weight and longer roots with lower fresh weight. Treatment with 50 mg·L−1 and 100 mg·L−1 resulted in the highest and lowest accumulation of chlorophylls and carotenoids in the leaves, respectively; however, seedlings treated with 100 mg·L−1 produced less anthocyanins and polyphenols and exhibited lower GPOX activity. In kale, AgNPs-derived seedlings had a lower content of chlorophylls, carotenoids, and anthocyanins but higher GPOX activity of and were characterized by higher fresh and dry shoot weights and higher heterogeneous biometric parameters of the roots. The results of these experiments may be of great significance for broadening the scope of knowledge on the influence of AgNPs on plant cells and the micropropagation of the vegetable species. Future studies should be aimed at testing lower or even higher concentrations of AgNPs and other NPs and to evaluate the genetic stability of NPs-treated vegetable crops and their yielding efficiency

    Zinc Oxide and Zinc Oxide Nanoparticles Impact on In Vitro Germination and Seedling Growth in Allium cepa L.

    No full text
    Zinc oxide nanoparticles (ZnO NPs) are ones of the most commonly manufactured nanomaterials worldwide. They can be used as a zinc fertilizer in agriculture to enhance yielding and to control the occurrence of diseases thanks to its broad antifungal and antibacterial action. The aim of this study was to investigate and compare the effects of ZnO submicron particles (ZnO SMPs) and ZnO NPs on the process of in vitro seed germination and seedling growth in onion (Allium cepa L. ‘Sochaczewska’), and to indicate the potential use of these compounds in onion production. In the experiment, disinfected seeds were inoculated on the modified Murashige and Skoog (MS) medium and poured with ZnO SMP or ZnO NP water suspension, at the concentrations of 50, 100, 200, 400, 800, 1600, and 3200 mg∙L−1. During three successive weeks, the germinating seeds were counted. Germination started most often on the second or third day of in vitro culture. The highest share of germination was recorded for seeds treated with 800 mg∙L−1 ZnO SMPs and ZnO NPs (52% and 56%, respectively). After the application of ZnO SMPs and ZnO NPs at the highest tested concentration (3200 mg∙L−1), the share of germinating seeds was only 19% and 11%, respectively. Interestingly, seedlings obtained from control seeds and seeds treated with ZnO SMPs and ZnO NPs did not differ statistically in terms of length, fresh weight, and dry weight of leaves, and roots. Both ZnO SMPs and ZnO NPs, in the concentration range from 50 to 1600 mg∙L−1, can be used to stimulate the germination process of onion seeds, without negative effects on the further growth and development of seedlings. There were no differences found between the action of ZnO NPs and ZnO SMPs, which suggested that the most important factor influencing seed germination was in fact the concentration of zinc ions, not the particle size

    Effect of Silver Nanoparticles on the In Vitro Regeneration, Biochemical, Genetic, and Phenotype Variation in Adventitious Shoots Produced from Leaf Explants in Chrysanthemum

    No full text
    Novel and unique properties of nanomaterials, which are not apparent in larger-size forms of the same material, encourage the undertaking of studies exploring the multifaced effects of nanomaterials on plants. The results of such studies are not only scientifically relevant but, additionally, can be implemented to plant production and/or breeding. This study aimed to verify the applicability of silver nanoparticles (AgNPs) as a mutagen in chrysanthemum breeding. Chrysanthemum × grandiflorum (Ramat.) Kitam. ‘Lilac Wonder’ and ‘Richmond’ leaf explants were cultured on the modified MS medium supplemented with 0.6 mg·L−1 6-benzylaminopurine (BAP) and 2 mg·L−1 indole-3-acetic acid (IAA) and treated with AgNPs (spherical; 20 nm in diameter size; 0, 50, and 100 mg·L−1). AgNPs strongly suppressed the capability of leaf explants to form adventitious shoots and the efficiency of shoot regeneration. The content of primary and secondary metabolites (chlorophyll a, chlorophyll b, total chlorophylls, carotenoids, anthocyanins, phenolic compounds) and the activity of enzymatic antioxidants (superoxide dismutase and guaiacol peroxide) in leaf explants varied depending on the AgNPs treatment and age of culture. Phenotype variations of ex vitro cultivated chrysanthemums, covering the color and pigment content in the inflorescence, were detected in one 50 mg·L−1 AgNPs-derived and five 100 mg·L−1 AgNPs-derived ‘Lilac Wonder’ plants and were manifested as the color change from pink to burgundy-gold. However, no changes in inflorescence color/shape were found among AgNPs-treated ‘Richmond’ chrysanthemums. On the other hand, the stem height, number of leaves, and chlorophyll content in leaves varied depending on the AgNPs treatment and the cultivar analyzed. A significant effect of AgNPs on the genetic variation occurrence was found. A nearly two-fold higher share of polymorphic products, in both cultivars studied, was generated by RAPD markers than by SCoTs. To conclude, protocols using leaf explant treatment with AgNPs can be used as a novel breeding technique in chrysanthemum. However, the individual cultivars may differ in biochemical response, the efficiency of in vitro regeneration, genetic variation, and frequency of induced mutations in flowering plants

    Effect of Plant Seed Mixture on Overwintering and Floristic Attractiveness of the Flower Strip in Western Poland

    No full text
    In order to increase biodiversity in cultivated areas, the implementation of agri-environmental programs is proposed, including interventions and eco-schemes. Flower strips are one such proposal. In order to achieve satisfactory results, the appropriate selection of plants is crucial. In flower strips, the number and diversification of overwintering plant species are important. Our observations suggest that the species diversity observed in the second year of the strip’s presence in western Poland composed of mostly annual 14 plant species did not overlap in the next year. The flower strip was established on soils in a very good rye complex. The average monthly air temperature in both seasons was similar. In the winter months after the establishment of the flower strip, the lowest temperature at the ground level and the lowest air temperature were recorded in December (−5.4 °C and −13.7 °C, respectively). Hydrological conditions were not favorable, including a very dry March. Wild species originally from the soil seed bank were dominant. The selection of the appropriate species composition of mixtures intended for flower strips should take into account not only the preferences of beneficial insects but also environmental conditions. The possibilities of the selected plant species are important. A large variety of spontaneously emerging species (considered weeds) can also successfully colonize existing gaps in the flower strips, providing an increase in biodiversity. From the beginning of June to the end of July, the share of flowering plants from the seed bank ranged from 42.59% to 88.19%, while among originally intended plant species, it was only 11.81–57.41%. In May and at the beginning of June, two intended species that were intensively flowering, Trifolium incarnatum L. (over 70.5%) and Phacelia tanacetifolia Benth. (26.47%), were definitely dominant. In later observations, it was noted that, unfortunately, the sown plants had a low level of flowering compared to the wild plants found in the flower strip. It is very important that flower strips include species that also bloom in July and August, and wildflower plants can highlight the attractiveness of the flower strip to beneficial insects and are a valuable addition. This paper evaluates the suitability of a commercially available seed mixture in terms of the floristic attractiveness and overwintering potential of annual plants

    Optimization of In Vitro Propagation of Pear (<i>Pyrus communis</i> L.) ‘Pyrodwarf<sup>®</sup>(S)’ Rootstock

    No full text
    Pears are among the most economically important fruits in the world that are grown in all temperate zones. Pyrus communis L., ‘Pyrodwarf®(S)’ rootstock is one of the gene sources used to improve fruit productivity, rootstock resistance, and tolerance to biotic and abiotic stresses. Traditional propagation of P. communis L. is time-consuming and limited by a short growing season and harsh winter conditions. Therefore, in vitro propagation is a suitable alternative. Murashige and Skoog medium (MS) and woody plant medium (WPM) supplemented with different concentrations of 6-benzyladenine (BA) and kinetin (Kin), individually or in combination, were used for in vitro shoot proliferation. Nodal segments were used as explants. MS medium augmented with indole-3-butyric acid (IBA) or indole-3-acetic acid (IAA) was then used for rooting of microshoots. A combination of 2 mg·L−1 BA and 1 mg·L−1 Kin in MS medium resulted in a significant improvement in shoot proliferation. This combination produced the highest number of shoots (4.352 per explant) and leaves (10.02 per explant). The longest shoots (4.045 cm) were obtained in WPM enriched with 1 mg·L−1 BA. However, these shoots were not suitable for multiplication and rooting steps. The largest number of roots (5.50 per microshoot) was obtained on MS medium augmented with IAA at 1 mg·L−1. The produced plantlets were cultivated in pots filled with perlite and cocopeat (in a ratio of 1:3) and acclimatized gradually in a greenhouse, recording an even 90% survival rate

    In Vitro Regeneration of Chrysanthemum from Ovaries and Ovules Treated with Thermal and Chemical Stimuli: Morphogenic and Cytogenetic Effects

    No full text
    Chrysanthemum (Chrysanthemum × morifolium (Ramat.) Hemsl.) holds a prominent position in the market of ornamental plants. To further advance chrysanthemum breeding efforts, the development of haploids may be useful. Therefore, the effect of various chemical and thermal treatments on regeneration efficiency and ploidy level in chrysanthemum was studied. Ovaries and ovules of three chrysanthemum cultivars, i.e., ‘Brasil,’ ‘Capitola,’ and ‘Jewel Time Yellow,’ were cultured either on a medium with 1 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and different concentrations (0.5–1.5 mg·L−1) of thidiazuron (TDZ) or subjected to thermal shock (pretreatment temperature of 4 °C or 32 °C) and cultured on a medium with 1 mg·L−1 2,4-D and 1 mg·L−1 6-benzylaminopurine (BAP). It was found that ovaries had a greater organogenic potential (both in terms of callogenesis and shoot formation) than ovules. Microscopic analyses revealed that shoots mainly developed via indirect somatic embryogenesis from a callus developed from the ovary wall. The highest number of shoots was produced in cooled (at 4 °C) ovaries of chrysanthemum ‘Brasil’ and in ‘Jewel Time Yellow’ ovaries cultured on a medium with 1.0–1.5 mg·L−1 TDZ. The latter cultivar also had the highest potential to produce plants with an altered ploidy level (doubled and halved the number of chromosomes). This study demonstrates that manipulating factors such as temperature and thidiazuron concentration can enhance regeneration efficiency and induce altered ploidy levels in selected cultivars, offering valuable insights for chrysanthemum breeding programs

    Effect of X-rays on Seedling Pigment, Biochemical Profile, and Molecular Variability in <i>Astrophytum</i> spp.

    No full text
    Cacti are important in agricultural economies and one of the most popular horticultural plant groups. The genus Astrophytum is one of the most valuable and desirable cacti for growers and collectors around the world. By selecting the appropriate breeding methods to induce variations in combination with modern biotechnology tools for rapid change detection, it is possible to meet the challenges of the modern world in creating new variability in plants. However, there exists a lack of research concerning the impact of ionizing radiation on cacti. The aim of the study was to assess the effects of X-rays at different doses (0 Gy—control, 15, 20, 25, and 50 Gy) on the dynamics of seed germination in vitro, changes in the color of seedlings, biochemical changes in the content of metabolites and changes at the molecular level in Astrophytum spp. ‘Purple’. A significant effect of X-rays on the induction of genetic variation was observed. Remarkably high polymorphism rates were observed, ranging from 59.09% for primer S12 to a full 100.0% for S3 and S8, as determined by the SCoT (Start-Codon-Targeted) marker. In addition, a large variation in the content of plant pigments (anthocyanins, carotenoids, chlorophyll a, and chlorophyll b) was noted. Additionally, discernible alterations in the color of the tested cactus seedlings, assessed by the RHSCC catalog, were attributed to the impact of ionizing radiation. These findings hold promise for the application of radiomutation breeding in acquiring new cactus cultivars

    Endophytic Fungi as Potential Biocontrol Agents against <i>Rhizoctonia solani</i> J.G. Kühn, the Causal Agent of Rice Sheath Blight Disease

    No full text
    The rice sheath blight disease, caused by Rhizoctonia solani J.G. Kühn fungus, is a major disease of Oryza sativa L. occurring all over the world. Therefore, efforts need to be undertaken to limit the spread of this pathogen, preferably by using environmentally friendly methods. In the present study, 57 fungal isolates were recovered by surface sterilization technique from 120 rice samples collected from paddy fields in Guilan province, Iran. Biological characterizations of the isolated taxa were performed in vitro, in the dual culture, volatile metabolites, and slide culture methods. Among the studied isolates, Trichoderma virens (J. H. Miller, Giddens and A. A. Foster) Arx was most effective in inhibiting the mycelial growth of R. solani in the dual culture (44.16% inhibition level), while Aspergillus fumigatus Fresen and T. virens had a 62.50–68.75% inhibition efficiency by volatile metabolites. In the slide culture, all of the isolates, except for T. harzianum Rifai, were effective in inhibiting the hyphae growth of R. solani. Under greenhouse conditions, rice plants inoculated with these potential antagonistic fungi showed a reduction in disease severity by even 41.4% as in the case of T. virens. Moreover, phenotypic properties of rice, such as plant height, fresh weight, and dry weight were increased in the plants inoculated with all antagonistic fungi tested, compared to the infected plants, except for the fresh weight of plants inoculated with Curnularia lunata (Wakker) Boedijn. The present in vivo and in vitro studies revealed that T. virens and A. fumigatus are the most effective antagonists in rice sheath blight disease control and could be applied in agricultural practice

    Synthesis, Characteristics, and Effect of Zinc Oxide and Silver Nanoparticles on the In Vitro Regeneration and Biochemical Profile of Chrysanthemum Adventitious Shoots

    No full text
    Studies on nanoparticles’ effects on plants are relevant for horticulture. This study aimed to test the influence of zinc oxide submicron particles (ZnO SMPs), zinc oxide nanoparticles (ZnO NPs), and zinc oxide nanoparticles combined with silver nanoparticles (ZnO+1%Ag NPs) applied at 100 and 500 mg·L−1 on the regeneration and biochemical activity of adventitious shoots in Chrysanthemum × morifolium (Ramat.) Hemsl. ‘UTP Burgundy Gold’ and ‘UTP Pinky Gold’. The original microwave solvothermal synthesis and characteristics of the ZnO samples were described. Internodes were cultured on the MS medium with 0.6 mg∙L−1 6-benzylaminopurine (BAP) and 2 mg∙L−1 indole-3-acetic acid (IAA). In ‘UTP Burgundy Gold’, the highest shoot regeneration efficiency was obtained for 100 mg·L−1 ZnO SMPs and 500 mg·L−1 ZnO NPs treatments (6.50 and 10.33 shoots per explant, respectively). These shoots had high or moderate chlorophyll and carotenoid contents. In ‘UTP Pinky Gold’, the highest shoot number was produced in the control (12.92), for 500 mg·L−1 ZnO SMPs (12.08) and 500 mg·L−1 ZnO NPs (10.42). These shoots had increased chlorophyll (a+b)-to-carotenoid ratios. In ‘UTP Pinky Gold’, the ZnO SMPs and ZnO NPs affected the anthocyanins biosynthesis, whereas ZnO + 1%Ag NPs decreased the phenolics accumulation. These results are important for the improvement of chrysanthemum micropropagation
    corecore